Abstract
This paper proposes a fuzzy modeling and event-triggered adaptive sliding mode control for steer-by-wire (SbW) systems subject to uncertain nonlinearity, time-varying perturbation, actuator fault, and limited communication resources. First, an interval type-2 fuzzy logic system (IT2 FLS) based on Lyapunov's adaptive scheme is built to model the uncertain nonlinearity. Then, an event-triggered adaptive sliding mode control method is designed to overcome the limited communication resources, time-varying perturbation, and actuator fault. This method eliminates the chattering phenomenon by utilizing nested adaptive technology and has practical finite-time stability. Theoretical analysis shows that the Zeno phenomenon is excluded. Finally, the validity of the methods is evaluated using simulations and vehicle experiments.







Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Kirli, A., Chen, Y., Okwudire, C., Ulsoy, G.: Torque-vectoring-based backup steering strategy for steer-by-wire autonomous vehicles with vehicle stability control. IEEE Trans. Veh. Technol 68(8), 7319–7328 (2019)
Vaio, M.D., Falcone, P., Hult, R., Petrillo, A., Santini, S.: Design and experimental validation of a distributed interaction protocol for connected autonomous vehicles at a road intersection. IEEE Trans. Veh. Technol 68(10), 9451–9465 (2019)
Peng, H., Wang, W., An, Q., Xiang, C., Li, L.: Path tracking and direct yaw moment coordinated control based on robust mpc with the finite time horizon for autonomous independent-drive vehicles. IEEE Trans. Veh. Technol 69(6), 6053–6066 (2020)
Zhang, L., Wang, Z., Ding, X., Li, S., Wang, Z.: Fault-tolerant control for intelligent electrified vehicles against front wheel steering angle sensor faults during trajectory tracking. IEEE Access 9, 65174–65186 (2021). https://doi.org/10.1109/ACCESS.2021.3075325
Marino, R., Scalzi, S., Netto, M.: Nested pid steering control for lane keeping in autonomous vehicles. Control Eng. Pract. 19(12), 1459–1467 (2011)
Yih, P., Gerdes, J.: Modification of vehicle handling characteristics via steer-by-wire. IEEE Trans. Control Syst. Technol. 13(6), 965–976 (2005)
Falcone, P., Borrelli, F., Asgari, J., Tseng, H.E., Hrovat, D.: Predictive active steering control for autonomous vehicle systems. IEEE Trans. Control Syst. Technol. 15(3), 566–580 (2007)
Yamaguchi, Y., Murakami, T.: Adaptive control for virtual steering characteristics on electric vehicle using steer-by-wire system. IEEE Trans. Ind. Electron. 56(5), 1585–1594 (2009)
Wang, H., Kong, H., Man, Z., Tuan, D.M., Cao, Z., Shen, W.: Sliding mode control for steer-by-wire systems with ac motors in road vehicles. IEEE Trans. Ind. Electron. 61(3), 1596–1611 (2014)
Wu, X.D., Zhang, M.M., Xu, M.: Active tracking control for steer-by-wire system with disturbance observer. IEEE Trans. Veh. Technol. 68(6), 5483–5493 (2019)
Do, M.T., Man, Z., Zhang, C., Wang, H., Tay, F.S.: Robust sliding mode-based learning control for steer-by-wire systems in modern vehicles. IEEE Trans. Veh. Technol. 63(2), 580–590 (2014)
Sun, Z., Zheng, J., Man, Z., Wang, H.: Robust control of a vehicle steer-by-wire system using adaptive sliding mode. IEEE Trans. Ind. Electron. 63(4), 2251–2262 (2016)
Wang, H., Man, Z., Kong, H., Zhao, Y., Yu, M., Cao, Z., Zheng, J., Do, M.: Design and implementation of adaptive terminal sliding mode control on a steer-by-wire equipped road vehicle. IEEE Trans. Ind. Electron. 63(9), 5774–5785 (2016)
Sun, Z., Zheng, J.C., Man, Z.H., Fu, M.Y., Lu, R.Q.: Nested adaptive super-twisting sliding mode control design for a vehicle steer-by-wire system. Mech. Syst. Signal Process. 122, 658–672 (2019)
Huang, C., Naghdy, F., Du, H.: Delta operator-based fault estimation and fault-tolerant model predictive control for steer-by-wire systems. IEEE Trans. Control Syst. Technol. 26(5), 1810–1817 (2018)
Huang, C., Naghdy, F., Du, H.: Fault tolerant sliding mode predictive control for uncertain steer-by-wire system. IEEE Trans. Cybern 49(1), 1810–1817 (2019)
Utkin, V.I.: Sliding Modes in Control and Optimization. Springer-Verlag, Berlin (1992)
Edwards, C., Spurgeon, S.K.: Sliding mode control: theory and applications. Taylor & Francis, UK (1998)
Hamayun, M.T., Edwards, C., Alwi, H.: Augmentation scheme for fault-tolerant control using integral sliding modes. IEEE Trans. Control Syst. Technol. 22(1), 307–313 (2014)
Utkin, V.I., Poznyak, A.S.: Adaptive sliding mode control with application to super-twist algorithm: Equivalent control method. Automatica 49(1), 39–47 (2013)
Wu, H.M., Karkoub, M.: Hierarchical fuzzy sliding-mode adaptive control for the trajectory tracking of differential-driven mobile robots. Int. J. fuzzy syst. 21(1), 33–49 (2019)
Ding, X., Wang, Z., Zhang, L.: Hybrid control-based acceleration slip regulation for four-wheel-independent-actuated electric vehicles. IEEE Trans. Transp. Electrification PP (2020). https://doi.org/10.1109/TTE.2020.3048405
Zhang, L., Wang, Y., Wang, Z.: Robust lateral motion control for in-wheel-motor-drive electric vehicles with network induced delays. IEEE Trans. Veh. Technol. 68(11), 10585–10593 (2019)
Hess, R.A., Wells, S.R.: Sliding mode control applied to reconfigurable flight control design. J. Guid., Control Dynam 26, 452–462 (2003)
Ma, X., Wong, P.K., Zhao, J., Xie, Z.: Cornering stability control for vehicles with active front steering system using t-s fuzzy based sliding mode control strategy. Mech. Syst. Signal Process. 125, 347–364 (2019)
Burton, J.A., Zinober, A.S.I.: Continuous approximation of variable structure control. Int. J. Syst. Sci. 17, 875–885 (1986)
Huang, Y.J., Kuo, T.C., Chang, S.H.: Adaptive sliding-mode control for nonlinear systems with uncertain parameters. IEEE Trans. Syst. Man Cybern. B 38(2), 534–539 (2008)
Levant, A.: Sliding order and sliding accuracy in sliding mode control. Int. J. Control 58(6), 1247–1263 (1993)
Laghrouche, S., Plestan, F., Glumineau, A.: Higher order sliding mode control based on integral sliding mode. Automatica 43(3), 531–537 (2007)
Edwards, C., Shtessel, Y.: Adaptive continuous higher order sliding mode control. Automatica 65(1), 183–190 (2016)
Tabuada, P.: Event-triggered real-time scheduling of stabilizing control tasks. IEEE Trans. Automa. Control 52(9), 1680–1685 (2007)
Henningsson, T., Johannesson, E., Cervin, A.: Sporadic event-based control of first-order linear stochastic systems. Automatica 44(11), 2890–2895 (2008)
Xu, C., Wu, B., Cao, X., Zhang, Y.: Distributed adaptive event-triggered control for attitude synchronization of multiple spacecraft. Nonlinear Dyn. 95(4), 2625–2638 (2019)
Li, H., Chen, G., Xiao, L.: Event-triggered sampling scheme for pinning control in multi-agent networks with general nonlinear dynamics. Neural Comput. Appl. 27(8), 2587–2599 (2016)
Zhang, J., Zhang, H., Lu, Y., Sun, S.: Cooperative output regulation of heterogeneous linear multi-agent systems with edge-event triggered adaptive control under time-varying topologies. Neural Comput. Appl. 32, 15573–15584 (2020)
Luan, Z., Zhang, J., Zhao, W., Wang, C.: Trajectory tracking control of autonomous vehicle with random network delay. IEEE Trans. Veh. Technol 69(8), 8140–8150 (2020)
Tuohy, S., Glavin, M., Hughes, C., Jones, E., Trivedi, M., Kilmartin, L.: Intra-vehicle networks: A review. IEEE Trans. Intell. Transp. Syst. 16(2), 534–545 (2015)
Behera, A.K., Bandyopadhyay, B.: New methodologies for adaptive sliding mode control. Int. J. Control 88(9), 1916–1931 (2016)
Liu, Y., Jiang, B., Lu, J., Cao, J., Lu, G.: Event-triggered sliding mode control for attitude stabilization of a rigid spacecraft. IEEE Trans. Syst., Man, Cybern., Syst. (2020, https://doi.org/10.1109/TSMC.2018.2867061)
Kumari, B., Behera, A.K., Bandyopadhyay, B.: Event-triggered sliding mode-based tracking control for uncertain euler-lagrange systems. IET Control Theory Appl. 12(9), 1228–1235 (2018)
Xu, X., Su, P., Wang, F., Chen, L., Atindana, V.A.: Coordinated control of dual-motor using the interval type-2 fuzzy logic in autonomous steering system of agv. Int. J. fuzzy syst. (1) (2020)
Nair, R.R., Behera, L., Kumar, S.: Multirobot systems with disturbances. IEEE Trans. Control Syst. Technol. 27(1), 39–47 (2019)
Haggag, S., Alstrom, D., Cetinkunt, S., Egelja, A.: Modeling, control, and validation of an electro-hydraulic steer-by-wire system for articulated vehicle applications. IEEE/ASME Trans. Mechatronics 10(6), 688–692 (2005)
Zhu, W., Jiang, Z.: Event-based leader-following consensus of multi-agent systems with input time delay. IEEE Trans. Autom. Control 60(5), 1362–1367 (2015)
Sun, Z., Zheng, J., Man, Z., Wang, H.: Adaptive fast non-singular terminal sliding mode control for a vehicle steer-by-wire system. IET Control Theory Appl. 11(8), 1245–1254 (2017)
Lin, F., Hung, Y., Ruan, K.: An intelligent second-order sliding-mode control for an electric power steering system using a wavelet fuzzy neural network. IEEE Trans. Fuzzy Syst. 22(6), 1598–1611 (2014)
Tao, G., Joshi, S.M., Ma, X.L.: Adaptive state feedback and tracking control of systems with actuator failures. IEEE Trans. Autom. Control 46(1), 78–95 (2000)
Wang, W., Wen, C.: Adaptive actuator failure compensation control of uncertain nonlinear systems with guaranteed transient performance. Automatica 46(12), 2082–2091 (2010)
Mao, Z., Yan, X.G., Jiang, B., Chen, M.: Adaptive fault-tolerant sliding-mode control for high-speed trains with actuator faults and uncertainties. IEEE Trans. Intell. Transp. Syst 21(6), 2449–2460 (2020)
H. Ma, H., Li, H.Y., Liang, H.J., Dong, G.W.: Adaptive fuzzy event-triggered control for stochastic nonlinear systems with full state constraints and actuator faults. IEEE Trans. Fuzzy Syst. 27(11), 2242–2254 (2019)
Lai, G., Liu, Z., Chen, C.L.P., Zhang, Y., Chen, X.: Adaptive compensation for infinite number of time-varying actuator failures in fuzzy tracking control of uncertain nonlinear systems. IEEE Trans. Fuzzy Syst. 26(2), 474–486 (2018)
Wang, B., Zhang, Y.: An adaptive fault-tolerant sliding mode control allocation scheme for multirotor helicopter subject to simultaneous actuator faults. IEEE Trans. Ind. Electron. 65(5), 4227–4236 (2018)
Jing, Y., Yang, G.: Fuzzy adaptive fault-tolerant control for uncertain nonlinear systems with unknown dead-zone and unmodeled dynamics. IEEE Trans. Fuzzy Syst. 27(12), 2265–2278 (2019)
Mendel, J.M.: General type-2 fuzzy logic systems made simple: A tutorial. IEEE Trans. Fuzzy Syst. 22(5), 1162–1182 (2014)
Wang, L.: A new look at type-2 fuzzy sets and type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 25(3), 963–706 (2017)
Mendel, J.M., Hagras, H., Tan, W.W., Melek, W.W., Ying, H.: Introduction to Type-2 Fuzzy Logic Control: Theory and Applications. Wiley (2014)
Mendel, J.M.: On km algorithms for solving type-2 fuzzy set problems. IEEE Trans. Fuzzy Syst. 21(3), 426–446 (2013)
Manceur, M., Essounbouli, N., Hamzaoui, A.: Second-order sliding fuzzy interval type-2 control for an uncertain system with real application. IEEE Trans. Fuzzy Syst. 20(2), 262–275 (2012)
Wu, D.: On the fundamental differences between interval type-2 and type-1 fuzzy logic controllers. IEEE Trans. Fuzzy Syst. 20(5), 832–848 (2012)
Mendel, J.M., John, R.I.B.: Type-2 fuzzy sets made simple. IEEE Trans. Fuzzy Syst. 10(2), 117–127 (2002)
Lin, C.M., La, V.H., Le, T.L.: Dc-dc converters design using a type-2 wavelet fuzzy cerebellar model articulation controller. Neural Comput. Appl. 32, 2217–2229 (2020)
Eshghi, A., Mousavi, S.M., Mohagheghi, V.: A new interval type-2 fuzzy approach for analyzing and monitoring the performance of megaprojects based on earned value analysis (with a case study). Neural Comput. Appl. 31, 5109–5133 (2019)
Luo, C., Tan, C., Wang, X., Zheng, Y.: An evolving recurrent interval type-2 intuitionistic fuzzy neural network for online learning and time series prediction. Appl. Soft Comput. 78 (2019)
Cao, L., Li, H., Wang, N., Zhou, Q.: Observer-based event-triggered adaptive decentralized fuzzy control for nonlinear large-scale systems. IEEE Trans. Fuzzy Syst. 27(6), 1201–1214 (2019)
Zhu, Z., Xia, Y., Fu, M.: Attitude stabilization of rigid spacecraft with finite-time convergence. Int. J. Robust Nonlin. Control 21(6), 686–702 (2011)
Ying, H.: Interval type-2 takagi-sugeno fuzzy systems with linear rule consequent are universal approximators. In: NAFIPS 2009 - 2009 Annual Meeting of the North American Fuzzy Information Processing Society (2009)
Na, J., Chen, Q., Ren, X.M., Guo, Y.: Adaptive prescribed performance motion control of servo mechanisms with friction compensation. IEEE Trans. Ind. Electron. 61(1), 486–494 (2014)
Acknowledgements
This work is partially supported by the National Natural Science Foundation of China (Grant No. 51775103 and 61773068), the State Key Laboratory Foundation of Synthetical Automation for Process Industries, Northeastern University, and Ningxia Natural Science Foundation of China (Grant No. 2022AAC03348).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Li, H., Tie, M. & Wang, Y. Event-Triggered Sliding Mode Control Using the Interval Type-2 Fuzzy Logic for Steer-by-Wire Systems with Actuator Fault. Int. J. Fuzzy Syst. 24, 3104–3117 (2022). https://doi.org/10.1007/s40815-022-01323-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40815-022-01323-x