Skip to main content
Log in

The Fuzzy-Based Visual Intelligent Guidance System of an Autonomous Underwater Vehicle: Realization of Identifying and Tracking Underwater Target Objects

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This study aims to develop a fuzzy-based visual intelligent guidance system (VIGS) that executes missions involving the identification and tracking of underwater target objects for an autonomous underwater vehicle (AUV). To demonstrate the VIGS functions, a series of tests were conducted in the stability tank and towing tank at National Cheng Kung University. The characteristic of the VIGS is to immediately capture continuous real-time images from the bow to calculate and identify visual information concerning the AUV’s surroundings. By mapping the target’s information in the AUV visual coordinate system (two-dimensional) onto the earth-fixed coordinates (three-dimensional), the relationships of corresponding distance and azimuth between the target and the AUV were defined. Eventually, this information was used to calculate the control parameters of the AUV’s moving speed and heading angle, completing the visual motion control framework. In the dynamic guidance experiments, the moving speed of the target object is proved to be a predominant factor leading to different trends of AUV’s steering performances for pitch and yaw controls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Packard, G.E., Kukulya, A., Austin, T., Dennett, M., Littlefield, R., Packard, G., Purcell, M., Stokey, R., Skomal, G.: Continuous autonomous tracking and imaging of white sharks and basking sharks using a REMUS-100 AUV. In: 2013 OCEANS-San Diego, pp. 1–5. IEEE, (2013)

  2. Foresti, G.L.: Visual inspection of sea bottom structures by an autonomous underwater vehicle. IEEE Transactions on Systems, Man, and Cybernetics. Part B (Cybernetics) 31, 691–705 (2001)

    Article  Google Scholar 

  3. Zhou, Z., Shen, H., Huang, H., Zhou, H., Wan, Z., Wang, Z., Xu, Y.: Autonomous Underwater Pipeline Tracking Control Based on Visual Images. In: 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 2101–2106. IEEE, (2018)

  4. Sheng, M., Tang, S., Wan, L., Zhu, Z., Li, J.: Fuzzy preprocessing and clustering analysis method of underwater multiple targets in forward looking sonar image for AUV tracking. Int. J. Fuzzy Syst. 22, 1261–1276 (2020)

    Article  Google Scholar 

  5. Yin, J., Wang, N.: Predictive trajectory tracking control of autonomous underwater vehicles based on variable fuzzy predictor. Int. J. Fuzzy Syst. 23(6), 1809–1822 (2020)

    Article  Google Scholar 

  6. Sáez, J.M., Escolano, F.: Entropy minimization SLAM using stereo vision. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp. 36–43. IEEE, (2005)

  7. Paull, L., Saeedi, S., Seto, M., Li, H.: AUV navigation and localization: A review. IEEE J. Oceanic Eng. 39, 131–149 (2013)

    Article  Google Scholar 

  8. Pfingsthorn, M., Rathnam, R., Luczynski, T., Birk, A.: Full 3D navigation correction using low frequency visual tracking with a stereo camera. In: OCEANS 2016-Shanghai, pp. 1–6. IEEE, (2016)

  9. Lee, P.-M., Jeon, B.-H., Kim, S.-M.: Visual servoing for underwater docking of an autonomous underwater vehicle with one camera. In: Oceans 2003. Celebrating the Past... Teaming Toward the Future (IEEE Cat. No. 03CH37492), pp. 677–682. IEEE, (2003)

  10. Park, J.-Y., Jun, B.-H., Lee, P.-M., Oh, J.: Experiments on vision guided docking of an autonomous underwater vehicle using one camera. OCEAN ENG 36, 48–61 (2009)

    Article  Google Scholar 

  11. Teo, K., An, E., Beaujean, P.-P.J.: A robust fuzzy autonomous underwater vehicle (AUV) docking approach for unknown current disturbances. IEEE J. Oceanic Eng. 37, 143–155 (2012)

    Article  Google Scholar 

  12. Stokey, R., Purcell, M., Forrester, N., Austin, T., Goldsborough, R., Allen, B., von Alt, C. (1997) A docking system for REMUS, an autonomous underwater vehicle. In: Oceans' 97. MTS/IEEE Conference Proceedings, pp. 1132–1136

  13. Vu, M.T., Choi, H.-S., Nhat, T.Q.M., Nguyen, N.D., Lee, S.-D., Le, T.-H., Sur, J.: Docking assessment algorithm for autonomous underwater vehicles. Appl Ocean Res 100, 102180 (2020)

    Article  Google Scholar 

  14. Fan, Y., Balasuriya, A.(2001) Optical flow based speed estimation in AUV target tracking. In: MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings (IEEE Cat. No. 01CH37295), pp. 2377–2382.

  15. Kim, D., Lee, D., Myung, H., Choi, H.-T.(2012) Object detection and tracking for autonomous underwater robots using weighted template matching. In: 2012 Oceans-Yeosu, pp. 1–5

  16. Balasuriya, B., Takai, M., Lam, W., Ura, T., Kuroda, Y.(1997) Vision based autonomous underwater vehicle navigation: underwater cable tracking. Oceans' 97. MTS/IEEE Conference Proceedings pp. 1418–1424

  17. Baek, N., Park, S.-M., Kim, K.-J., Park, S.-B. (2007) Vehicle color classification based on the support vector machine method. In: International conference on intelligent computing, pp. 1133–1139, Springer

  18. Joblove, G.H., Greenberg, D (1978) Color spaces for computer graphics. In: Proceedings of the 5th annual conference on Computer graphics and interactive techniques pp. 20–25

  19. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. IEEE conference on computer vision and pattern recognition 580–587 (2014)

  20. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. Advances in neural information processing systems 91–99 (2015)

  21. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. IEEE International Conference on Computer Vision (ICCV) 2980–2988 (2017)

  22. Sanderson, A.C., Weiss, L.E.: Image-based visual servo control of robots. In: Robotics and industrial inspection, pp. 164–169. International Society for Optics and Photonics, (1983)

  23. Flandin, G., Chaumette, F., Marchand, E.: Eye-in-hand/eye-to-hand cooperation for visual servoing. In: Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065), pp. 2741–2746. IEEE, (2000)

  24. Hutchinson, S., Hager, G.D., Corke, P.I.: A tutorial on visual servo control. IEEE Trans. Robot. Autom. 12, 651–670 (1996)

    Article  Google Scholar 

  25. Wang, T., Zhao, Q., Yang, C.: Visual navigation and docking for a planar type AUV docking and charging system. OCEAN ENG 224, 108744 (2021)

    Article  Google Scholar 

  26. Wan, E.A., Van Der Merwe, R.: The unscented Kalman filter for nonlinear estimation. In: Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No. 00EX373), pp. 153–158. (2000)

  27. Mu, X., He, B., Zhang, X., Song, Y., Shen, Y., Feng, C.: End-to-end navigation for autonomous underwater vehicle with hybrid recurrent neural networks. OCEAN ENG 194, 106602 (2019)

    Article  Google Scholar 

  28. Van Der Merwe, R., Doucet, A., De Freitas, N., Wan, E.: The unscented particle filter. Adv. Neural. Inf. Process. Syst. 13, 584–590 (2000)

    Google Scholar 

  29. Santos, N.P., Lobo, V., Bernardino, A.: Unscented Particle Filters with Refinement Steps for UAV Pose Tracking. J Intell Robot Syst 102, 1–24 (2021)

    Google Scholar 

  30. Yu, C.-M., Lin, Y.-H.: Experimental Analysis of a Visual-Recognition Control for an Autonomous Underwater Vehicle in a Towing Tank. Appl. Sci. 10, 2480 (2020)

    Article  Google Scholar 

  31. Lin, Y.-H., Yu, C.-M., Wu, C.-Y.: Towards the design and implementation of an image-based navigation system of an autonomous underwater vehicle combining a color recognition technique and a fuzzy logic controller. Sensors-Basel 21, 4053 (2021)

    Article  Google Scholar 

  32. Duane, C.B.: Close-range camera calibration. Photogramm. Eng 37, 855–866 (1971)

    Google Scholar 

  33. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1330–1334 (2000)

    Article  Google Scholar 

  34. Rosten, E., Drummond, T.(2006) Machine learning for high-speed corner detection. In: European conference on computer vision, pp. 430–443. Springer

  35. Smith, S., Rae, G., Anderson, D.(1993) Applications of fuzzy logic to the control of an autonomous underwater vehicle. In: [Proceedings 1993] Second IEEE International Conference on Fuzzy Systems, pp. 1099–1106. IEEE

  36. Marlin, T.E.: Process control. Chemical Engineering Series, McGraw-Hill International Editions, New York (1995)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology, Taiwan, under Grant MOST 109-2221-E-006-100-MY2. The authors would like to express their thanks to staff of NCKU towing tank for their operation of the towing carriage and instruments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Hsien Lin.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, YH., Yu, CM., Huang, J.YT. et al. The Fuzzy-Based Visual Intelligent Guidance System of an Autonomous Underwater Vehicle: Realization of Identifying and Tracking Underwater Target Objects. Int. J. Fuzzy Syst. 24, 3118–3133 (2022). https://doi.org/10.1007/s40815-022-01327-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-022-01327-7

Keywords

Navigation