Skip to main content
Log in

Descriptor Takagi-Sugeno Approach Used to Diagnose Faults on a CSTR Reactor

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper presents an approach to diagnose faults on systems with Descriptor Takagi–Sugeno representation. This approach is focused on simultaneously estimate states and actuator faults. Not only the estimation algorithm is designed to estimate actuator time-varying faults, but also it is useful for abrupt faults. The observer considered has additional degrees of freedom to estimate, and it is called as generalized observer, where the proportional and proportional-integral observers are particular cases. The convergence analysis is given through the Lyapunov approach. A continuous stirred tank reactor is used as a case study to evaluate the capabilities of the observer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Krokavec, D., Filasová, A.: Design of PD observer-based fault estimator for a class of takagi-sugeno descriptor systems. IFAC-PapersOnLine, pp. 754–759 (2015). https://doi.org/10.1016/j.ifacol.2015.09.280

  2. Hamdi, H., Rodrigues, M., Mechmeche, C., Braiek, N.B.: Robust fault detection and estimation for descriptor systems based on multi-models concept. Int. J. Control Autom. Syst. 6(10), 1260–1266 (2012). https://doi.org/10.1007/s12555-012-0622-z

    Article  Google Scholar 

  3. Osorio-Gordillo, G.-L., Astorga-Zaragoza, C.-M., Pérez-Estrada, A.-J., Vargas-Méndez, R.-A., Darouach, M., Boutat-Baddas, L.: Fault estimation for descriptor linear systems based on the generalised dynamic observer. Int. J. Syst. Sci. 9, 2398–2409 (2018). https://doi.org/10.1080/00207721.2018.1503357

    Article  MathSciNet  MATH  Google Scholar 

  4. Jia, Q., Chen, W., Zhang, Y., Li, H.: Fault reconstruction and fault-tolerant control via learning observers in Takagi–Sugeno fuzzy descriptor systems with time delays. IEEE Trans. Ind. Electron. 62(6), 3885–3895 (2015). https://doi.org/10.1109/TIE.2015.2404784

    Article  Google Scholar 

  5. Shaker, M.S.: A Robust adaptive observer-based time varying fault estimation. Amirkabir Int. J. Model. Identif. Simul. Control 47(2), 11–19 (2015). https://doi.org/10.22060/MISCJ.2015.566

  6. Sun, K., Mou, S., Qiu, J., Wang, T., Gao, H.: Adaptive fuzzy control for nontriangular structural atochastic switched nonlinear systems with full state constraints. IEEE Trans. Fuzzy Syst. 27(8), 1587–1601 (2018). https://doi.org/10.1109/TFUZZ.2018.2883374

    Article  Google Scholar 

  7. Kong, F., Zhu, Q., Huang, T.: Application to the discontinuous fuzzy inertial neural networks. IEEE Trans. Fuzzy Syst. 29, 3711–3722 (2021)

    Article  Google Scholar 

  8. Qiu, J., Sun, K., Wang, T., Gao, H.: Observer-based fuzzy adaptive event-triggered control for pure-feedback nonlinear systems with prescribed performance. IEEE Trans. Fuzzy Syst. (2019). https://doi.org/10.1109/TFUZZ.2019.2895560

    Article  Google Scholar 

  9. Li, J., Zhou, S., Xu, S.: Fuzzy control system design via fuzzy lyapunov functions. IEEE Trans. Syst. Man Cybernet. B 38(6), 1657–1661 (2008). https://doi.org/10.1109/TSMCB.2008.928224

    Article  Google Scholar 

  10. Kong, F., Rajan, R.: Finite-time and fixed-time synchronization control of discontinuous fuzzy Cohen–Grossberg neural networks with uncertain external perturbations and mixed time delays. Fuzzy Sets Syst. 411, 105–135 (2021). https://doi.org/10.1016/j.fss.2020.07.009

    Article  MathSciNet  MATH  Google Scholar 

  11. Kong, F., Zhu, Q., Sakthivel, R.: Finite-time and fixed-time synchronization control of discontinuous fuzzy Cohen–Grossberg neural networks. Fuzzy Sets Syst. 394, 87–109 (2020). https://doi.org/10.1016/j.fss.2019.12.002

    Article  MATH  Google Scholar 

  12. Luenberger, D.G.: Dynamic equations in descriptor form. IEEE Trans. Automat. Control AC-22, 312–321 (1977). https://doi.org/10.1109/TAC.1977.1101502

  13. Araujo, J.M., Barros, P.R., Dorea, C.E.T.: Design of observers with error limitation in discrete-time descriptor systems: a case study of a hydraulic tank system. IEEE Trans. Control Syst. Technol. 20, 1041–1047 (2012). https://doi.org/10.1109/TCST.2011.2159719

    Article  Google Scholar 

  14. Boulkroune, B., Darouach, M., Zasadzinski, M., Gillé, S., Fiorelli, D.: A nonlinear observer design for an activated sludge wastewater treatment process. J. Process Control 19, 1558–1565 (2009). https://doi.org/10.1109/ACC.2009.5160499

    Article  Google Scholar 

  15. Boutayeb, M., Darouach, M.: Observers Design for Non Linear Descriptor Systems. In: Procees. of IEEE Conf. Decis. and Control, New Orleand, LA, pp. 2369–2374 (1995). https://doi.org/10.1109/CDC.1995.480692

  16. Fridman, E., Shaked, U.: A descriptor system approach to \({H}_\infty \) control of linear time-delay systems. IEEE Trans. Automat. Control 47, 253–270 (2002). https://doi.org/10.1109/9.983353

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, P., Zhang, E., Yang, X., Yang, L.: Passivity and optimal control of descriptor biological complex systems. IEEE Trans. Automat. Control 53, 122–125 (2008). https://doi.org/10.1109/TAC.2007.911341

    Article  MathSciNet  MATH  Google Scholar 

  18. Osorio-Gordillo, G.L., Darouach, M., Astorga-Zaragoza, C.M., Boutat-Baddas, L.: New dynamical observers design for linear descriptor systems. IET Control Theory Appl. 10(17), 2223–2232 (2016). https://doi.org/10.1049/iet-cta.2016.0431

    Article  MathSciNet  MATH  Google Scholar 

  19. Osorio-Gordillo, G.L., Darouach, M., Astorga-Zaragoza, C.M.: \({H}_\infty \) dynamical observers design for linear descriptor systems. application to state and unknown input estimation. Eur. J. Control, 35–43 (2015). https://doi.org/10.1016/j.ejcon.2015.07.001

  20. Müller, P.C.: Modelling and control of mechatronic systems by the descriptor approach. J. Theoretic. Appl. Mech. 43, 593–607 (2005)

    Google Scholar 

  21. Rajiv, C.: Model predictive control of high-index DAE systems without index reduction. PhD thesis, COPPE UFRJ (2019)

  22. Taniguchi, T., Tanaka, K., Yamafuji, K., Wang, H.O.: Fuzzy Descriptor systems: satability analysis and design via LMIs. In: Am. Control Conf. (ACC), San Diego, USA, pp. 1827–1831 (1999). https://doi.org/10.1109/ACC.1999.786165

  23. Taniguch, T., Tanaka, K., Wang, H.O.: Fuzzy descriptor systems and nonlinear model following control. IEEE Trans. Fuzzy Syst. 8, 442–452 (2000). https://doi.org/10.1109/91.868950

    Article  Google Scholar 

  24. Yoneyama, J., Ichikawa, I.: \({H}_\infty \) control for Takagi Sugeno descriptor systems. In: IEEE Int. Conf. on Syst., Man, and Cybernetics, Tokio, Japan, pp. 28–33 (1999)

  25. Skelton, R.E., Iwasaki, T., Grigoriadis, K.: A Unified Algebraic Approach to Linear Control Design. Taylor & Francis, London (1998)

    Google Scholar 

  26. Lendek, Z., Guerra, T.M., Babuska, R., De Schutter, B.: Stability Analysis and Nonlinear Observer Design Using Takagi–Sugeno Fuzzy Models. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  27. Pérez-Estrada, A.J., Osorio-Gordillo, G.L., Darouach, M., Alma, M.: Adaptive observer design for LPV systems. IFAC-PapersOnLine 52(28), 140–145 (2019). https://doi.org/10.1016/j.ifacol.2019.12.361

    Article  Google Scholar 

  28. Boukas, E.K.: Control of Singular Systems with Random Abrupt Changes. Springer, Berlin, Heidelberg (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R.-A. Vargas-Méndez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osorio-Gordillo, GL., Mujica-Campos, VE., Vargas-Méndez, RA. et al. Descriptor Takagi-Sugeno Approach Used to Diagnose Faults on a CSTR Reactor. Int. J. Fuzzy Syst. 24, 3469–3482 (2022). https://doi.org/10.1007/s40815-022-01340-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-022-01340-w

Keywords

Navigation