Skip to main content

Advertisement

Log in

An Optimized Gradient Dynamic-Neuro-Weighted-Fuzzy Clustering Method: Application in the Nutrition Field

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Soft clustering is able to handle overlapping data thanks to membership functions that allow examples to belong to several clusters. However, the formula linking membership functions to centers and the adoption of fixed time steps, when updating the parameters, prevents research from exploring areas that may be promising. To alleviate this complexity and enlarge the search space, we propose a constrained optimization model that de-assigns memberships from centers. To take advantage of the ability of neural networks to understand the characteristics of the data and of dynamic systems to remember previous groupings, we solve the proposed model by the third-order gradient recurrent network whose stability point is formed by the memberships and the centers. In this respect, the fixed time step Euler-Cauchy algorithm prevents the search from exploring promising regions. To remedy this problem, we adopt a variable time step that allows a maximum decay of the Lyaponuv function at each iteration. We demonstrate that dissociating the membership coefficients from the group centers results in a less complex optimization model with a larger set of feasible solutions offering better optimal fuzzy clustering. We compared our method to different clustering methods basing on silhouette, separability, compactness criterion, and on Dunn’s index; our method has shown its superiority on academic data sets. We used our method to group plants based on 24 nutrients which results in a better classification in comparison with the unidimensional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kriegel, H.-P., Kroger, P., Sander, J., Zimek, A.: Density-based clustering. WIREs Data Mining Knowl. Discov. 1(3), 231–240 (2011)

    Article  Google Scholar 

  2. Govaert, G., Nadif, M.: Block clustering with bernoulli mixture models: comparison of different approaches. Comput. Stat. Data Anal. 52(6), 3233–3245 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Mirkin, B.: Mathematical Classification and Clustering. Kluwer Academic Publishers, New York (1996)

    Book  MATH  Google Scholar 

  4. Hartuv, E., Shamir, R.: A clustering algorithm based on graph connectivity. Inf. Process. Lett. 76(4–6), 175–181 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Kohonen, T.: Self-organized formation of topologically correct feature maps. Biol. Cybern. 43(1), 59–69 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ettaouil, M., Ghanou, Y., Elmoutaouakil, K., Lazaar, M.: A new architecture optimization model for the Kohonen networks and clustering. J. Adv. Res. Comput. Sci. 3(1), 14–32 (2011)

    Google Scholar 

  7. Ettaouil, M., Lazaar, M.: Improved self-organizing maps and speech compression. Int. J. Comput. Sci. Issues 9(2), 197 (2012)

    Google Scholar 

  8. Ettaouil, M., Lazaar, M., Elmoutaouakil, K., Haddouch, K.: A new algorithm for optimization of the Kohonen network architectures using the continuous Hopfield networks. WSEAS Trans. Comput. 12(4), 155–163 (2013)

    Google Scholar 

  9. Jain, A.K., Dubes, R.C.: Algorithms for clustering data. Prentice-Hall, North Holland (1988)

    MATH  Google Scholar 

  10. Murtagh, F.: A survey of algorithms for contiguity-constrained clustering and related problems. Comput. J. 28, 82–88 (1985)

    Article  Google Scholar 

  11. Yacoub M., Badran F., Thiria S.: Topological Hierarchical Clustering: Application to Ocean Color Classification, ICANN’2001, Springer 2001, Proceedings, p. 492–499 92001).

  12. Gan, G., Ma, C., Wu, J.: Data clustering: theory, algorithms, and applications. Society for Industrial and Applied Mathematics (2020).

  13. Manly, B.F.: Randomization, Bootstrap and Monte Carlo Methods in Biology: Texts in Statistical Science. Chapman and Hhall/CRC, New York (2018)

    Book  Google Scholar 

  14. Ruspini, E.H., Bezdek, J.C., Keller, J.M.: Fuzzy clustering: a historical perspective. IEEE Comput. Intell. Mag. 14(1), 45–55 (2019)

    Article  Google Scholar 

  15. Munusamy, S., Murugesan, P.: Modified dynamic fuzzy c-means clustering algorithm–application in dynamic customer segmentation. Appl. Intell. 50(6), 1922–1942 (2020)

    Article  Google Scholar 

  16. El Moutaouakil, K., Touhafi, A.: A New Recurrent Neural Network Fuzzy Mean Square Clustering Method. In: 2020 5th International Conference on Cloud Computing and Artificial Intelligence: Technologies and Applications (CloudTech), Marrakesh, Morocco, 2020, pp. 1–5, https://doi.org/10.1109/CloudTech49835.2020.9365873.

  17. Vuorimaa, P.: Fuzzy self-organizing map. Fuzzy Sets Syst. 66(2), 223–231 (1994)

    Article  Google Scholar 

  18. Pennington, J.A.T., Fisher, R.A.: Classification of fruits and vegetables. J. Food Compos. Anal. 22, S23–S31 (2009). https://doi.org/10.1016/j.jfca.2008.11.012

    Article  Google Scholar 

  19. Gan, G., Chaoqun, M.A., Wu, J.: Data clustering: theory, algorithms, and applications. Society for Industrial and Applied Mathematics (2020)

  20. Chen, Q., Pan, G.: A structure-self-organizing DBN for image recognition. Neural Comput. Appl. 33, 877–886 (2021)

    Article  Google Scholar 

  21. Venkatkumar, I.A., Shardaben, S.J.K.: Comparative study of data mining clustering algorithms. In: 2016 International Conference on Data Science and Engineering (ICDSE), Cochin, 2016, pp. 1–7. https://doi.org/10.1109/ICDSE.2016.7823946

  22. Rueda, A., Krishnan, S.: Clustering Parkinson’s and age-related voice impairment signal features for unsupervised learning. Adv. Data Sci. Adapt. Anal. 10(02), 1840007 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mahdavi, M., Chehreghani, M.H., Abolhassani, H., Forsati, R.: Novel meta-heuristic algorithms for clustering web documents. Appl. Math. Comput. 201(1–2), 441–451 (2008)

    MathSciNet  MATH  Google Scholar 

  24. Guo, D., Chen, J., Chen, Y., Li, Z.: LBIRCH: an improved BIRCH algorithm based on link. In: Proceedings of the 2018 10th International Conference on Machine Learning and Computing, pp. 74–78 (2018, February).

  25. Schubert, E., Rousseeuw, P.J.: Faster k-medoids clustering: improving the PAM, CLARA, and CLARANS algorithms. In International conference on similarity search and applications, pp. 171–187. Springer, Cham (2019, October).

  26. Samudi, S., Widodo, S., Brawijaya, H.: The K-Medoids clustering method for learning applications during the COVID-19 pandemic. Sinkron 5(1), 116–121 (2020)

    Article  Google Scholar 

  27. Cao, F., Liang, J., Li, D., Bai, L., Dang, C.: A dissimilarity measure for the k-Modes clustering algorithm. Knowl.-Based Syst. 26, 120–127 (2012)

    Article  Google Scholar 

  28. Xu, X, Ester, M., Kriegel, H., Sander, J.: A distribution-based clustering algorithm for mining in large spatial databases. In: Proceedings 14th International Conference on Data Engineering, Orlando, FL, USA, 1998, pp. 324–331. https://doi.org/10.1109/ICDE.1998.655795

  29. Nayyar, A., Puri, V.: Comprehensive analysis and performance comparison of clustering algorithms for big data. Rev. Comput. Eng. Res. 4(2), 54–80 (2017)

    Article  Google Scholar 

  30. Kriegel, H.-P., Kroger, P., Sander, J., Zimek, A.: Density-based clustering. WIREs Data Mining Knowl Discov 1, 231–240 (2011). https://doi.org/10.1002/widm.30

    Article  Google Scholar 

  31. Corizzo, R., Pio, G., Ceci, M., Malerba, D.: DENCAST: distributed density-based clustering for multi-target regression. J. Big Data 6(1), 1–27 (2019)

    Article  Google Scholar 

  32. Yu, H., Chen, L., Yao, J., Wang, X.: A three-way clustering method based on an improved DBSCAN algorithm. Physica A 535, 122289 (2019)

    Article  Google Scholar 

  33. Simpson, P.K.: Fuzzy min-max neural network—Part II: Clustering. IEEE Trans. Fuzzy Syst. 1(1), 32–45 (1993)

    Article  Google Scholar 

  34. Haddouch, K., El Moutaouakil, K.: New Starting Point of the Continuous Hopfield Network. In : International Conference on Big Data, Cloud and Applications. Springer, Cham, p. 379–389 (2018)

  35. Haddouch, K., El Moutaouakil, K.: New checker for constraint network solutions. In: Proceedings of the 2nd international Conference on Big Data, Cloud and Applications, pp. 1–6 (2017)

  36. Senhaji, K., El Moutaouakil, K., Ettaouil, M.: A robust neural network approach for the portfolio selection problem basing on new rational models. J. Eng. Appl. Sci. 14(3), 675–683 (2019)

    Article  Google Scholar 

  37. Talavan, P.M., Yanez, J.: The generalized quadratic knapsack problem. A neuronal; network approach. Neural Netw. 19, 416–428 (2006)

    Article  MATH  Google Scholar 

  38. Michaud, D., Pietinen, P., Taylor, P., et al.: Intakes of fruits and vegetables, carotenoids and vitamins A, E, C in relation to the risk of bladder cancer in the ATBC cohort study. Br. J. Cancer 87, 960–965 (2002). https://doi.org/10.1038/sj.bjc.6600604

    Article  Google Scholar 

  39. Holick, M.F.: Vitamin D and bone health. J. Nutr. 126(suppl4), 1159S-1164S (1996). https://doi.org/10.1093/jn/126.suppl4.1159S

    Article  Google Scholar 

  40. Rezaee, M.J., Eshkevari, M., Saberi, M., Hussain, O.: GBK-means clustering algorithm: an improvement to the K-means algorithm based on the bargaining game. Knowl.-Based Syst. 213, 106672 (2021)

  41. Jiamthapthaksin, R., Eick, C.F., Lee, S.: GAC-GEO: a generic agglomerative clustering framework for geo-referenced datasets. Knowl. Inf. Syst. 29, 597–628 (2011). https://doi.org/10.1007/s10115-010-0355-3

    Article  Google Scholar 

  42. Wang, Z., et al.: Clustering by local gravitation. IEEE Trans. Cybern. 48(5), 1383–1396 (2018)

    Article  Google Scholar 

  43. Gao, M., Shi, G.-Y.: Ship-handling behavior pattern recognition using AIS sub-trajectory clustering analysis based on the T-SNE and spectral clustering algorithms. Ocean Eng. 205, 106919 (2020)

    Article  Google Scholar 

  44. Nidheesh, N., Nazeer, K.A.A., Ameer, P.M.: A Hierarchical Clustering algorithm based on Silhouette Index for cancer subtype discovery from genomic data. Neural Comput. Appl. 32, 11459–11476 (2020)

    Article  Google Scholar 

  45. Alia, O.M.: Dynamic relocation of mobile base station in wireless sensor networks using a cluster-based harmony search algorithm. Inf. Sci. 385, 76–95 (2017)

    Article  Google Scholar 

  46. Bas, E.: A robust optimization approach to diet problem with overall glycemic load as objective function. Appl. Math. Modell. 38(19–20), 4926–4940 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  47. Hand, D.J. , Adams, N.M.: Data mining. Wiley StatsRef: Statistics Reference Online, 2014, p. 1–7

  48. Mariem, B., Karim, E.M., Satori, K. : A probabilistic vector representation and neural network for text classification. In: International Conference on Big Data, Cloud and Applications. Springer, Cham, 2018. p. 343–355.

  49. Wiseman M.: The Second World Cancer Research Fund/American Institute for Cancer Research Expert Report. Food, Nutrition, Physical Activity, and the Prevention of Cancer: A Global Perspective: Nutrition Society and BAPEN Medical Symposium on ‘Nutrition support in cancer therapy’. Proc. Nutr. Soc. 67(3), 253–256 (2008)

  50. Eick, C.F., Zeidat, N., Zhao, Z.: Supervised clustering - algorithms and benefits. In: 16th IEEE International Conference on Tools with Artificial Intelligence, Boca Raton, FL, USA, 2004, pp. 774–776. https://doi.org/10.1109/ICTAI.2004.111

  51. Ketchen, D.J., Shook, C.L.: The application of cluster analysis in Strategic Management Research: an analysis and critique. Strategic Manag. J. 17(6), 441–458 (1996)

    Article  Google Scholar 

  52. Law, M.H.C., Figueiredo, M., Jain, A.K.: Simultaneous feature selection and clustering using mixture models. IEEE Trans. Pattern Anal. Mach. Intell. 26(9), 1154–1166 (2004)

    Article  Google Scholar 

  53. Goutte, C., Hansen, L.K., Liptrot, M.G., Rostrup, E.: Feature-space clustering for fMRI meta-analysis. Hum. Brain Map. 13(3), 165–183 (2001). https://doi.org/10.1002/hbm.1031

    Article  Google Scholar 

  54. Sugar, C.A., James, G.M.: Finding the number of clusters in a data set: an information-theoretic approach. J. Am. Stat. Assoc. 98, 750–763 (2003). https://doi.org/10.1198/016214503000000666

    Article  MATH  Google Scholar 

  55. Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W.M., III., Satija, R.: Comprehensive integration of single-cell data. Cell 177(7), 1888–1902 (2019)

    Article  Google Scholar 

  56. Finding the Right Number of Clusters in k-Means and EM Clustering: v-Fold Cross-Validation”. Electronic Statistics Textbook. StatSoft. 2010. Retrieved 2010-05-03

  57. Honarkhah, M., Caers, J.: Stochastic simulation of patterns using distance-based pattern modeling. Math. Geosci. 42(5), 487–517 (2010). https://doi.org/10.1007/s11004-010-9276-7

    Article  MATH  Google Scholar 

  58. Kent, J.T., Ganeiber, A.M., Mardia, K.V.: A new unified approach for the simulation of a wide class of directional distributions. J. Comput. Graph. Stat. 27(2), 291–301 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  59. Patibandla, R.S.M.L., Veeranjaneyulu, N.: Performance analysis of partition and evolutionary clustering methods on various cluster validation criteria. Arab. J. Sci. Eng. 43(8), 4379–4390 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Ministry of National Education, Professional Training, Higher Education and Scientific Research and the Digital Development Agency (DDA) and CNRST of Morocco (Nos. Alkhawarizmi/2020/23).

Funding

This work is supported by the National Center for Scientific and Technical Research of Morocco via AL-Khawarizmi Artificial Intelligence Program (Grant No. alkhawarizmi/2020/23).

Author information

Authors and Affiliations

Authors

Contributions

Corresponding authors: KEM. Data collection: AY. Theoretical part and processing: KEM. Data verification, results analysis, and diet recommendations: HB and SC. Redaction: KEM and AY.

Corresponding author

Correspondence to Karim El Moutaouakil.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This paper does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Moutaouakil, K., Yahyaouy, A., Chellak, S. et al. An Optimized Gradient Dynamic-Neuro-Weighted-Fuzzy Clustering Method: Application in the Nutrition Field. Int. J. Fuzzy Syst. 24, 3731–3744 (2022). https://doi.org/10.1007/s40815-022-01358-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-022-01358-0

Keywords

Navigation