Skip to main content

Advertisement

Log in

A Fuzzy Identification Method Based on the Likelihood Function and Noise Clustering Algorithm

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

In this paper, based on the modified fuzzy c-regression model and noise clustering algorithm, a fuzzy identification method is proposed. Firstly, by considering the relations for the real model, the established model, and the outliers, a modified objective function with noise is proposed to alleviate the affection of noise. Additionally, the consequent parameters of the fuzzy model can be obtained by the iterative formula which obtained by the Lagrangian formula. Furthermore, a modified membership function, which is involved the likelihood function, is propounded to get a more suitable multivariate normal distribution for the data points. Lastly, two examples are illustrated to show the validity and effectiveness of the proposed results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Xu, C.: Decoupling correlated and uncorrelated parametric uncertainty contributions for nonlinear models. Appl. Math. Modell. 37(24), 9950–9969 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Tsai, S.H., Chen, Y.W.: A novel identification method for Takagi–Sugeno fuzzy model. Fuzzy Sets Syst. 338(1), 117–135 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. Hasheminejad, S.A., Shabaab, M., Javadinarab, N.: Developing cluster-based adaptive network fuzzy inference system tuned by particle swarm optimization to forecast annual automotive sales: a case study in Iran market. Int. J. Fuzzy Syst. 37(23), 9591–9602 (2013)

    Google Scholar 

  4. Rathnayake, N., Dang, T.L., Hoshino, Y.: A novel optimization algorithm: cascaded adaptive neuro-fuzzy inference system. Int. J. Fuzzy Syst. 23, 1955–1971 (2021)

    Article  Google Scholar 

  5. Sarkar, R., Kumar, J.R., Sridhar, R., Vidyasagar, S.: A new hybrid BAT-ANFIS-based power tracking technique for partial shaded photovoltaic systems. Int. J. Fuzzy Syst. 23, 1313–1325 (2021)

    Article  Google Scholar 

  6. Tsai, S.H., Chen, Y.W.: A novel fuzzy identification method based on ant colony optimization algorithm. IEEE Access 4, 3747–3756 (2016)

    Article  Google Scholar 

  7. Martins, J.B., Bertone, A.M.A., Yamanaka, K.: Novel fuzzy system identification: comparative study and application for data forecasting. IEEE Latin Am. Trans. 17(11), 1793–1799 (2019)

    Article  Google Scholar 

  8. Santoso, F., Garratt, M.A., Anavatti, S.G., Hassanein, O., Stenhouse, T.: Novel fuzzy system identification: comparative study and application for data forecasting. IEEE/ASME Trans. Mechatron. 25(4), 2330–2341 (2020)

    Article  Google Scholar 

  9. Hathaway, R.J., Bezdek, J.C.: Switching regression models and fuzzy clustering. IEEE Trans. Fuzzy Syst. 1(3), 195–204 (1993)

    Article  Google Scholar 

  10. Tsai, S.H., Wang, J.W., Song, E.S., Lam, H.K.: Robust control for nonlinear hyperbolic PDE systems based on the polynomial fuzzy model. IEEE Trans. Cybernet. 51(7), 3789–3801 (2021)

    Article  Google Scholar 

  11. Tsai, S.H., Jen, C.Y.: Stabilization for polynomial fuzzy time-delay system: a sum-of-squares approach. IEEE Trans. Fuzzy Syst. 26(6), 3630–3644 (2018)

    Article  Google Scholar 

  12. Kim, E., Park, M., Ji, S., Park, M.: A new approach to fuzzy modeling. IEEE Trans. Fuzzy Syst. 5(3), 328–337 (1997)

    Article  Google Scholar 

  13. Kung, C.C., Su, J.: Affine Takagi–Sugeno fuzzy modelling algorithm by fuzzy c-regression models clustering with a novel cluster validity criterion. IET Control Theory Appl. 1(5), 1255–1265 (2007)

    Article  MathSciNet  Google Scholar 

  14. Wang, L.X., Mendel, J.M.: Fuzzy basis functions, universal approximation, and orthogonal least squares learning. IEEE Trans. Neural Netw. 3(5), 807–814 (1992)

    Article  Google Scholar 

  15. Dincer, N.G.: A new fuzzy time series model based on fuzzy \(c\)-regression model. Int. J. Fuzzy Syst. 25, 1872–1887 (2018)

    Article  Google Scholar 

  16. Chuang, C.C., Jeng, J.T., Lin, W.Y., Hsiao, C.C., Tao, C.W.: Interval fuzzy \(c\)-regression models with competitive agglomeration for symbolic interval-valued data. Int. J. Fuzzy Syst. 256, 891–900 (2020)

    Article  Google Scholar 

  17. Yan, C., Liu, Q., Liu, J., Liu, W., Li, M., Qi, M.: Payments per claim model of outstanding claims reserve based on fuzzy linear regression. Int. J. Fuzzy Syst. 89, 1950–1960 (2019)

    Article  Google Scholar 

  18. Choi, S.H., Jung, H.Y., Kim, H.: Ridge fuzzy regression model. Int. J. Fuzzy Syst. 8, 2077–2090 (2019)

    Article  MathSciNet  Google Scholar 

  19. Gong, Y., Yang, S., Ma, H., Ge, M.: Fuzzy regression model based on Incentre distance and application to employee performance evaluation. Int. J. Fuzzy Syst. 7, 2632–2639 (2018)

    Article  Google Scholar 

  20. Soltani, M., Chaari, A., Hmida, F.B.: A novel fuzzy \(c\)-regression model algorithm using a new error measure and particle swarm optimization. AMCS Int. J. Appl. Math. Comput. Sci. 11(3), 617–628 (2012)

    MathSciNet  MATH  Google Scholar 

  21. Dave, R.N.: Characterization and detection of noise in clustering. Pattern Recognit. Lett. 12(11), 657–664 (1991)

    Article  Google Scholar 

  22. Li, C., Zhou, J., Xiang, X., Li, Q., An, X.: T–S fuzzy model identification based on a novel fuzzy c-regression model clustering algorithm. Eng. Appl. Artif. Intell. 22(4), 646–653 (2009)

    Article  Google Scholar 

  23. Canova, A., Gruosso, G., Repetto, M.: Magnetic design optimization and objective function approximation. IEEE Trans. Magn. 39(5), 2154–2162 (2003)

    Article  Google Scholar 

  24. Li, C., Zhou, J., Li, Q., An, X., Xiang, X.: A new T–S fuzzy-modeling approach to identify a boiler-turbine system. Expert Syst. Appl. 37(3), 2214–2221 (2010)

    Article  Google Scholar 

  25. Zou, W., Li, C., Zhang, N.: A T-S Fuzzy Model Identification Approach Based on a Modified Inter Type-2 FRCM Algorithm. IEEE Trans. Fuzzy Systems 26(3), 1104–1113 (2018)

    Article  Google Scholar 

  26. Duan, J.C., Chung, K.: Multilevel fuzzy relational systems: structure and identification. Soft Comput. 6(2), 71–86 (2002)

    Article  MATH  Google Scholar 

  27. Guo, F., Lin, L., Xie, X., Luo, B.: Novel hybrid rule network based on T–S fuzzy rules. Neural Netw. World 25(1), 93–116 (2015)

    Article  Google Scholar 

  28. Jang, J.R., Sun, C.T., Mizutani, E.: Neuro-fuzzy and soft computing: a computational approach to learning and machineintelligence. IEEE Trans. Auto. Control 42(10), 1482–11484 (1997)

    Article  Google Scholar 

  29. Nauck, D., Kruse, R.: Neuro-fuzzy systems for function approximation. IEEE Trans. Fuzzy Syst. 101(2), 261–271 (1997)

    MathSciNet  MATH  Google Scholar 

  30. Masoumi, M., Khanjani, M.J., Qaderi, K.: Uplift capacity prediction of suction caisson in clay using a hybrid intelligence method (GMDH-HS). Appl. Ocean Res. 59, 408–416 (2016)

    Article  Google Scholar 

  31. Narendra, K.S., Parthasarathy, K.: Identification and control of dynamical systems using neural networks. IEEE Trans. Neural Netw. 1(1), 4–27 (1990)

    Article  Google Scholar 

  32. Cheung, N.J., Ding, X., Shen, H.B.: OptiFel: a convergent heterogeneous particle swarm optimization algorithm for Takagi–Sugeno fuzzy modeling. IEEE Trans. Fuzzy Syst. 22(4), 919–933 (2014)

    Article  Google Scholar 

  33. Li, C., Zhou, J., Chang, L., Huang, Z.J., Zhang, Y.: T–S fuzzy model identification based on a novel hyperplane-shaped membership function. IEEE Trans. Fuzzy Syst. 25(5), 1364–1370 (2017)

    Article  Google Scholar 

  34. Dam, T., Deb, A.K.: A clustering algorithm based TS fuzzy model for tracking dynamical system data. J. Frankl. Inst. 134(13), 5617–5645 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was funded by Ministry of Science and Technology, Taiwan, under grants MOST-110-2221-E-110-067 and MOST-111-2221-E-110-061.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun-Hung Tsai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, SH., Chen, YT. A Fuzzy Identification Method Based on the Likelihood Function and Noise Clustering Algorithm. Int. J. Fuzzy Syst. 25, 136–144 (2023). https://doi.org/10.1007/s40815-022-01366-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-022-01366-0

Keywords