Skip to main content

Advertisement

Log in

Reliable Fuzzy Dynamic Positioning Tracking Controller for Unmanned Surface Vehicles Based on Aperiodic Measurement Information

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This study investigates the reliable fuzzy tracking control problem for an unmanned surface vehicles (USV) with dynamic positioning system (DPS) based on aperiodic measurement information. The Takagi–Sugeno (T–S) fuzzy model with actuator failure for the USV is established, and the values of the actuator failures are random, and both lower and upper bounds of the sampling period are considered. By constructing a suitable Lyapunov–Krasovskii functional (LKF), the mean square exponential criteria are obtained and the real sampling patterns are fully captured. Finally, an example is exhibited that the Aperiodic sampled-data controller can ensure the states of the USV and have excellent tracking performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Wang, Y., Wang, S., Tan, M.: Path generation of autonomous approach to a moving ship for unmanned vehicles. IEEE Trans. Ind. Electron. 62(9), 5619–5629 (2015)

    Article  Google Scholar 

  2. Wang, Y.L., Han, Q.L.: Network-based fault detection filter and controller coordinated design for unmanned surface vehicles in network environments. IEEE Trans. Industr. Inf. 12(5), 1753–1765 (2016)

    Article  MathSciNet  Google Scholar 

  3. Ren, R.Y., Zou, Z.J., Wang, X.G.: A two-time scale control law based on singular perturbations used in rudder roll stabilization of ships. Ocean Eng. 88, 488–498 (2014)

    Article  Google Scholar 

  4. Do, V.D., Dang, X.K., Huynh, L.T., Ho, V.C.: Optimized multi-cascade fuzzy model for ship dynamic positioning system based on genetic algorithm. In: International Conference on Industrial Networks and Intelligent Systems, pp 165–180. Springer, Cham (2019)

  5. Chen, M., Ge, S.S., How, B.V.E., Choo, Y.S.: Robust adaptive position mooring control for marine vessels. IEEE Trans. Control Syst. Technol. 21(2), 395–409 (2012)

    Article  Google Scholar 

  6. Kahveci, N.E., Ioannou, P.A.: Adaptive steering control for uncertain ship dynamics and stability analysis. Automatica 49(3), 685–697 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Wang, Y.L., Han, Q.L.: Network-based heading control and rudder oscillation reduction for unmanned surface vehicles. IEEE Trans. Control Syst. Technol. 25(5), 1609–1620 (2017)

    Article  Google Scholar 

  8. Wang, N., Gao, Y., Zhang, X.: Data-driven performance-prescribed reinforcement learning control of an unmanned surface vehicle. IEEE Trans. Neural Netw. Learning Syst. 32(12), 5456–5467 (2021)

    Article  MathSciNet  Google Scholar 

  9. Wang, N., Ahn, C.K.: Coordinated trajectory-tracking control of a marine aerial-surface heterogeneous system. IEEE/ASME Trans. Mechatron. 26(6), 3198–3210 (2021)

    Article  Google Scholar 

  10. Wang, N., Gao, Y., Zhao, H., Ahn, C.K.: Reinforcement learning-based optimal tracking control of an unknown unmanned surface vehicle. IEEE Trans. Neural Netw. Learning Syst. 32(7), 3034–3045 (2020)

    Article  MathSciNet  Google Scholar 

  11. Wang, N., Zhang, Y., Ahn, C.K., Xu, Q.: Autonomous pilot of unmanned surface vehicles: Bridging path planning and tracking. IEEE Trans. Veh. Technol. 71(3), 2358–2374 (2021)

    Article  Google Scholar 

  12. Xu, S., Wang, X., Yang, J et al.: A fuzzy rule-based PID controller for dynamic positioning of vessels in variable environmental disturbances. J. Mar. Sci. Technol. 1–11 (2019)

  13. Xia, G., Xue, J., Jiao, J.: Dynamic positioning control system with input time-delay using fuzzy approximation approach. Int. J. Fuzzy Syst. 20(2), 630–639 (2018)

    Article  MathSciNet  Google Scholar 

  14. Peng X, Zhang B, Rong L. A robust unscented Kalman filter and its application in estimating dynamic positioning ship motion states. Journal of Marine Science and Technology, 1–15 (2019).

  15. Fu, M., Sun, J., Wang, D.: Research on thrust allocation of dynamic positioning ship with cycloidal propeller. In: 37th Chinese Control Conference (CCC). IEEE, pp. 620–624 (2018)

  16. Zhang, G., Huang, C., Zhang, X., et al.: Practical constrained dynamic positioning control for uncertain ship through the minimal learning parameter technique. IET Control Theory Appl. 12(18), 2526–2533 (2018)

    Article  MathSciNet  Google Scholar 

  17. Bidikli, B., Tatlicioglu, E., Zergeroglu, E.: Compensating of added mass terms in dynamically positioned surface vehicles: a continuous robust control approach. Ocean Eng. 139, 198–204 (2017)

    Article  Google Scholar 

  18. Hao, L.Y., Zhang, H., Li, T.S., Lin, B., Chen, C.P.: Fault tolerant control for dynamic positioning of unmanned marine vehicles based on TS fuzzy model with unknown membership functions. IEEE Trans. Veh. Technol. 70(1), 146–157 (2021)

    Article  Google Scholar 

  19. Gao, X., Li, T., Yuan, L.E., Bai, W.: Robust fuzzy adaptive output feedback optimal tracking control for dynamic positioning of marine vessels with unknown disturbances and uncertain dynamics. Int. J. Fuzzy Syst. 23(7), 2283–2296 (2021)

    Article  Google Scholar 

  20. Wang, Y., Yang, X., Yan, H.: Reliable fuzzy tracking control of near-space hypersonic vehicle using aperiodic measurement information. IEEE Trans. Ind. Electron. 66, 9439–9447 (2019)

    Article  Google Scholar 

  21. Karimi, H.R.: Robust H filter design for uncertain linear systems over network with network-induced delays and output quantization. Norsk Forening for Automatisering (2009)

  22. Wang, Y., Karimi, H.R., Lam, H.K., Shen, H.: An improved result on exponential stabilization of sampled-data fuzzy systems. IEEE Trans. Fuzzy Syst. 26, 3875–3883 (2018)

    Article  Google Scholar 

  23. Yu, L., Cui, Y., Lu, Z., Liu, Y.: Sampled-based bipartite tracking consensus of nonlinear multiagents subject to input saturation. Complex Eng Syst. (2022). https://doi.org/10.20517/ces.2022.08

    Article  Google Scholar 

  24. Sakthivel, R., Karimi, H.R., Joby, M., et al.: Resilient sampled-data control for Markovian jump systems with an adaptive fault-tolerant mechanism. IEEE Trans. Circuits Syst. II 64(11), 1312–1316 (2017)

    Google Scholar 

  25. Xia, J., Chen, G., Park, J.H., et al.: Dissipativity-based sampled-data control for fuzzy switched Markovian jump systems. IEEE Trans. Fuzzy Syst. 29(6), 1325–1339 (2020)

    Article  Google Scholar 

  26. Wang, Y., Shi, P.: On master-slave synchronization of Chaotic Lur’e systems using sampled-data control. IEEE Trans. Circ. Syst. II (2016)

  27. Chen, W.H., Wang, Z., Lu, X.: On sampled-data control for master-slave synchronization of chaotic Lur’e systems. IEEE Trans. Circ. Syst. II 59(8), 515–519 (2012)

    Google Scholar 

  28. Wu, Z.G., Shi, P., Su, H., Chu, J.: Stochastic synchronization of Markovian jump neural networks with time-varying delay using sampled data. IEEE Trans. Cybern. 43(6), 1796–1806 (2013)

    Article  Google Scholar 

  29. Wu, Z.G., Shi, P., Su, H., Chu, J.: Local synchronization of chaotic neural networks with sampled-data and saturating actuators. IEEE Trans. Cybern. 44(12), 2635–2645 (2014)

    Article  Google Scholar 

  30. Karimi, H.R., Gao, H.: Mixed H2/H∞ output-feedback control of second-order neutral systems with time-varying state and input delays. ISA Trans. 47(3), 311–324 (2008)

    Article  Google Scholar 

  31. Zhang, Z., Song, X., Li, C., Sun, X.: Fuzzy reduced-order filtering for nonlinear parabolic PDE systems with limited communication. Complex Eng. Syst. (2021). https://doi.org/10.20517/ces.2021.10

    Article  Google Scholar 

  32. Yucel, E., Ali, M.S., Gunasekaran, N., et al.: Sampled-data filtering of Takagi-Sugeno fuzzy neural networks with interval time-varying delays. Fuzzy Sets Syst. 316, 69–81 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ge, X., Han, Q.L., Jiang, X.: Sampled-data H∞ filtering of Takagi-Sugeno fuzzy systems with interval time-varying delays. J. Franklin Inst. 351, 2515–2542 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zheng, M., Yang, S., Li, L.: Aperiodic sampled-data control for chaotic system based on Takagi-Sugeno fuzzy model. Complexity (2021). https://doi.org/10.1155/2021/6401231

    Article  Google Scholar 

  35. Wang, Y., Karimi, H.R., Lam, H.K., et al.: Notice of violation of IEEE publication principles: an improved result on exponential stabilization of sampled-data fuzzy systems. IEEE Trans. Fuzzy Syst. 26(6), 3875–3883 (2018)

    Article  Google Scholar 

  36. Katayama, H.: Nonlinear sampled-data stabilization of dynamically positioned ships. IEEE Trans. on Control Syst. Technol. 18, 463–468 (2010)

    Article  Google Scholar 

  37. Katayama, H., Aoki, H.: Straight-line trajectory tracking control for sampled-data underactuated ships. IEEE Trans. Control Syst. Technol. 22(4), 1638–1645 (2014)

    Article  Google Scholar 

  38. Zheng, M., Zhou, Y., Yang, S., et al.: Robust H control for sampled-data dynamic positioning ships. J. Control Eng. Appl. Inform. 19(4), 84–92 (2017)

    Google Scholar 

  39. Yang, S., Zheng, M.: H-infinity fault-tolerant control for dynamic positioning ships based on sampled-data. J. Control Eng. Appl. Inform. 20(4), 32–39 (2018)

    Google Scholar 

  40. Zheng, M., Zhou, Y., Yang, S.: Robust fuzzy sampled-data control for dynamic positioning ships. J. Shanghai Jiaotong Univ. 23(2), 209–217 (2018)

    Article  Google Scholar 

  41. Ye, D., Yang, G.H.: Adaptive fault-tolerant tracking control against actuator faults with application to flight control. IEEE Trans. Control Syst. Technol. 14(6), 1088–1096 (2006)

    Article  Google Scholar 

  42. Tannuri, E., Agostinho, A., Morishita, H., Moratelli, L.: Dynamic positioning systems: an experimental analysis of sliding mode control. Control Eng. Pract. 18(10), 1121–1132 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (51579114, 51879119); The Natural Science Foundation of Fujian Province (2022J01323, 2021J01822); Youth Innovation Foundation of Xiamen (3502Z20206019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minjie Zheng.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, M., Su, Y., Yang, S. et al. Reliable Fuzzy Dynamic Positioning Tracking Controller for Unmanned Surface Vehicles Based on Aperiodic Measurement Information. Int. J. Fuzzy Syst. 25, 358–368 (2023). https://doi.org/10.1007/s40815-022-01414-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-022-01414-9

Keywords