Skip to main content

Advertisement

Log in

Prescribed Finite-Time Adaptive Fuzzy Control via Output Feedback for Output-constrained Nonlinear Systems

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

A new and efficient output-feedback adaptive backstepping control strategy is developed to realize a finite-time output tracking control task for nonlinear output-constrained systems. The main characteristic of this strategy is to construct an asymmetric barrier Lyapunov function based on the performance functions and error variable to achieve finite-time tracking control. Because the system states are unknown, fuzzy state observer is set up to reconstruct the system states. Consequently, an observer-based fuzzy adaptive output-feedback controller is presented. The proposed control strategy ensures that the output tracking error meets the preassigned precision level throughout a pre-given time period, meanwhile, the output variable complies with time-varying restrictions for all time and other closed-loop signals are bounded. Lastly, two examples are employed for numerical simulation research to reveal the feasibility and availability of the developed control strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Li, B., Xia, J., Zhang, H., Shen, H., Wang, Z.: Event-triggered adaptive fuzzy tracking control for nonlinear systems. Int. J. Fuzzy Syst. 22(5), 1389–1399 (2020)

    Article  MATH  Google Scholar 

  2. Tong, S., Li, Y., Sui, S.: Adaptive fuzzy tracking control design for SISO uncertain nonstrict feedback nonlinear systems. IEEE Trans. Fuzzy Syst. 24(6), 1441–1454 (2016)

    Article  Google Scholar 

  3. Liu, Z., Wang, F., Zhang, Y., Philip Chen, C.L.: Fuzzy adaptive quantized control for a class of stochastic nonlinear uncertain systems. IEEE Trans. Cybern. 46(2), 524–534 (2015)

    Article  Google Scholar 

  4. Wang, H., Chen, B., Liu, X., Liu, K., Lin, C.: Robust adaptive fuzzy tracking control for pure-feedback stochastic nonlinear systems with input constraints. IEEE Trans. Cybern. 43(6), 2093–2104 (2013)

    Article  Google Scholar 

  5. Tee, K.P., Ge, S.S., Tay, E.H.: Barrier Lyapunov functions for the control of output-constrained nonlinear systems. Automatica 45(4), 918–927 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Zhao, Z., He, W., Ge, S.S.: Adaptive neural network control of a fully actuated marine surface vessel with multiple output constraints. IEEE Trans. Control Syst. Technol. 22(4), 1536–1543 (2014)

    Article  Google Scholar 

  7. Meng, W.C., Yang, Q., Sun, Y.: Adaptive neural control of nonlinear MIMO systems with time-varying output constraints. IEEE Trans. Neural Netw. Learn. Syst. 26(5), 1074–1085 (2015)

    Article  MathSciNet  Google Scholar 

  8. Liang, X., Wang, N.: Adaptive leader-follower formation for unmanned surface vehicles subject to output constraints. Int. J. Fuzzy Syst. 22(2), 2943 (2020)

  9. Zhang, Z., Wu, Y.: Adaptive fuzzy tracking control of autonomous underwater vehicles with output constraints. IEEE Trans. Fuzzy Syst. 29(5), 1311–1319 (2021)

    Article  Google Scholar 

  10. Zhou, Q., Wang, L., Wu, C., Li, H., Du, H.: Adaptive fuzzy control for nonstrict-feedback systems with input saturation and output constraint. IEEE Trans. Syst. Man Cybern. Syst. 47(1), 1–12 (2017)

    Article  Google Scholar 

  11. Du, P.H., Liang, H.J., Zhao, S.Y., Ahn, C.K.: Neural-based decentralized adaptive finite-time control for nonlinear large-scale systems with time-varying output constraints. IEEE Trans. Syst. Man Cybern. Syst. 51(5), 3136–3147 (2021)

    Article  Google Scholar 

  12. Jia, T.H., Pan, Y.N., Liang, H.J., Lam, H.K.: Event-based adaptive fixed-time fuzzy control for active vehicle suspension systems with time-varying displacement constraint. IEEE Trans. Fuzzy Syst. (2021). https://doi.org/10.1109/TFUZZ.2021.3075490

  13. Bhat, S.P., Bernstein, D.S.: Continuous finite-time stabilization of the translational and rotational double integrators. IEEE Trans. Autom. Control 43(5), 678–682 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Polyakov, A.: Nonlinear feedback design for fixed-time stabilization of linear systems. IEEE Trans. Autom. Control 57(8), 2016–2110 (2012)

    Article  MathSciNet  Google Scholar 

  15. Wang, H.H., Chen, B., Lin, C., Sun, Y.M., Wang, F.: Adaptive finite-time control for a class of uncertain high-order non-linear systems based on fuzzy approximation. IET Control Theory Appl. 11(5), 677–684 (2017)

    Article  MathSciNet  Google Scholar 

  16. Ren, P., Wang, F., Zhu, R.: Adaptive fixed-time fuzzy control of uncertain nonlinear quantized systems. Int. J. Fuzzy Syst. 23(3), 794–803 (2021)

    Article  Google Scholar 

  17. Li, K., Tong, S.: Fuzzy adaptive practical finite-time control for time delays nonlinear systems. Int. J. Fuzzy Syst. 21(4), 1013–1025 (2019)

    Article  MathSciNet  Google Scholar 

  18. Su, H., Zhang, W.: Finite-time tracking control for a class of mimo nonstrict-feedback nonlinear systems via adaptive fuzzy method. Int. J. Fuzzy Syst. 24(1), 713–727 (2022)

    Article  Google Scholar 

  19. Wang, H., Kang, S., Feng, Z.: Finite-time adaptive fuzzy command filtered backstepping control for a class of nonlinear systems. Int. J. Fuzzy Syst. 21(8), 2575–2587 (2019)

    Article  MathSciNet  Google Scholar 

  20. Jin, X.: Adaptive fixed-Time control for mimo nonlinear systems with asymmetric output constraints using universal barrier functions. IEEE Trans. Automatic Cont. 64(7), 3046–3053 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yuan, X., Chen, B., Lin, C.: Prescribed finite-time adaptive neural tracking control for nonlinear state-constrained systems: Barrier function approach. IEEE Trans. Neural Netw. Learn. Syst. (2021). https://doi.org/10.1109/TNNLS.2021.3085324

  22. Ren, B., Ge, S.S., Tee, K.P., Lee, T.H.: Adaptive neural control for output feedback nonlinear systems using a barrier Lyapunov function. IEEE Trans. Neural Netw. 21(8), 1339–1345 (2010)

    Article  Google Scholar 

  23. Wang, H., Liu, K., Liu, X.P., Chen, B., Lin, C.: Neural-based adaptive output-feedback control for a class of nonstrict-feedback stochastic nonlinear systems. IEEE Trans. Cybern. 45(9), 1977–1987 (2015)

    Article  Google Scholar 

  24. Chen, B., Zhang, H.G., Liu, X.P., Lin, C.: Neural observer and adaptive neural control design for a class of nonlinear systems. IEEE Trans. Neural Netw. Learn. Syst. 29(9), 4261–4271 (2018)

    Article  Google Scholar 

  25. Bing, C., Liu, X., Chong, L.: Observer and adaptive fuzzy control design for nonlinear strict-feedback systems with unknown virtual control coefficients. IEEE Trans. Fuzzy Syst. 26(3), 1732–1743 (2018)

    Article  Google Scholar 

  26. Du, P.H., Sun, K., Zhao, S.Y., Liang, H.J.: Observer-based adaptive fuzzy control for time-varying state constrained strict-feedback nonlinear systems with dead-zone. Int. J. Fuzzy Syst. 21(3), 733–744 (2018)

    Article  MathSciNet  Google Scholar 

  27. Yi, J., Li, J., Li, J.: Adaptive fuzzy output feedback control for nonlinear nonstrict-feedback time-delay systems with full state constraints. Int. J. Fuzzy Syst. 20(6), 1730–1744 (2018)

    Article  MathSciNet  Google Scholar 

  28. Zhang, Q., Zhai, D., Dong, J.: Observer-based adaptive fuzzy decentralized control of uncertain large-scale nonlinear systems with full state constraints. Int. J. Fuzzy Syst. 21(4), 1085–1103 (2019)

    Article  MathSciNet  Google Scholar 

  29. Yu, Z.X., Yang, Y.K., Sun, J.T.: Observer-based adaptive finite-time quantized tracking control of nonstrict-feedback nonlinear systems with asymmetric actuator saturation. IEEE Trans. Syst. Man Cybern. Syst. 50(11), 4545–4556 (2015)

    Article  Google Scholar 

  30. Li, Y.M., Li, K.W., Tong, S.C.: Finite-time adaptive fuzzy output feedback dynamic surface control for MIMO non-strict feedback systems. IEEE Trans. Fuzzy Syst. 27(1), 96–110 (2019)

    Article  MathSciNet  Google Scholar 

  31. Yuan, X., Chen, B., Lin, C.: Fuzzy adaptive output-feedback tracking control for nonlinear strict-feedback systems in prescribed finite time. J. Franklin Inst. 358(15), 7309–7332 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang, L.X., Mendel, J.M.: Fuzzy basis functions, universal approximation, and orthogonal least squares learning. IEEE Trans. Neural Netw. 3(5), 807–814 (1992)

    Article  Google Scholar 

  33. Polycarpou, M.M., Ioannou, P.A.: A robust adaptive nonlinear control design. Automatica 32(3), 423–427 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  34. Deng, H., Krstic, M.: Output-feedback stochastic nonlinear stabilization. IEEE Trans. Automatic Cont. 44(2), 328–333 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  35. Tong, S., Li, Y.: Observer-based fuzzy adaptive control for strict-feedback nonlinear systems. Fuzzy Sets Syst. 160(12), 1749–1764 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhang, H.W., Lewis, F.L., Qu, Z.H.: Lyapunov, adaptive, and optimal design techniques for cooperative systems on directed communication graphs. IEEE Trans. Ind. Electron. 59(7), 3026–3041 (2012)

    Article  Google Scholar 

  37. Pan, Y.N., Li, Q., Liang, H.J., Lam, H.-K.: A novel mixed control approach for fuzzy systems via membership functions online learning policy. IEEE Trans. Fuzzy Syst. (2021). https://doi.org/10.1109/TFUZZ.2021.3130201

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grants 61873137 and Shandong Taishan Scholar Project ts20190930.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Chen.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, X., Chen, B. & Lin, C. Prescribed Finite-Time Adaptive Fuzzy Control via Output Feedback for Output-constrained Nonlinear Systems. Int. J. Fuzzy Syst. 25, 1055–1068 (2023). https://doi.org/10.1007/s40815-022-01422-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-022-01422-9

Keywords