Skip to main content

Advertisement

Log in

Linguistic Dual Hesitant Fuzzy Preference Relations and Their Application in Group Decision-Making

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Intuitionistic fuzzy preference relations (IFPRs) can not only deal with the uncertainty and vagueness of decision makers’ judgments but also describe the information from the aspects of preferred and non-preferred, respectively. Thus, it has proved to be an efficient tool for solving group decision-making (GDM) problems. However, considering the expression of linguistic information of the current extended IFPRs is limited by a single linguistic term, it is still imperfect to deal with GDM problems. Hence, this paper first proposes a novel extended IFPRs as linguistic dual hesitant fuzzy preference relations (LDHFPRs) by utilizing a set of ordered linguistic terms to describe the preferred and non-preferred evaluation information, which recognize the uncertainty and hesitance of each decision maker and conform to real-life decision-making situations better. Subsequently, we construct the conditions of additive consistency and develop a maximum consistency linear programming model to cope with the problem of inconsistent LDHFPRs. Furthermore, a novel consensus reaching process which pays more attention to the minority but important individual opinions is established. Finally, a real-world application is utilized to demonstrate the effectiveness of the proposed method, and a comparison with the existing related works is presented to show the advantages and innovation of the proposed GDM method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

All data, models, or code generated or used during the study are available from the corresponding author by request.

References

  1. Bustince, H., Burillo, P.: Structures on intuitionistic fuzzy relations. Fuzzy Sets Syst. 78, 293–303 (1996)

    MathSciNet  MATH  Google Scholar 

  2. Bustince, H.: Construction of intuitionistic fuzzy relations with predetermined properties. Fuzzy Sets Syst. 109, 379–403 (2000)

    MathSciNet  MATH  Google Scholar 

  3. Xu, Z.S., Cai, X.Q.: Group Decision Making with Incomplete Interval-Valued Intuitionistic Preference Relations. Group Decis. Negot. 24(2), 193–215 (2015)

    Google Scholar 

  4. Wu, J., Chiclana, F.: Non-dominance and attitudinal prioritisation methods for intuitionistic and interval-valued intuitionistic fuzzy preference relations. Expert Syst. Appl. 39, 13409–13416 (2012)

    Google Scholar 

  5. Wu, J., Chiclana, F.: Multiplicative consistency of intuitionistic reciprocal preference relations and its application to missing values estimation and consensus building, Knowledge Based. System 71, 187–200 (2014)

    Google Scholar 

  6. Liao, H.C., Xu, Z.S.: Consistency of the fused intuitionistic fuzzy preference relation in group intuitionistic fuzzy analytic hierarchy process. Appl. Soft Comput. 35, 812–826 (2015)

    Google Scholar 

  7. Wan, S.P., Xu, G.L., Dong, J.Y.: A novel method for group decision making with interval-valued Atanassov intuitionistic fuzzy preference relations. Inf. Sci. (Ny) 372, 53–71 (2016)

    MATH  Google Scholar 

  8. Xu, G.L., Wan, S.P., Wang, F., Dong, J.Y., Zeng, Y.F.: Mathematical programming methods for consistency and consensus in group decision making with intuitionistic fuzzy preference relations. Knowl. Based Syst. 98, 30–43 (2016)

    Google Scholar 

  9. Chu, J., Liu, X., Wang, Y., Chin, K.S.: A group decision making model considering both the additive consistency and group consensus of intuitionistic fuzzy preference relations. Comput. Ind. Eng. 101, 227–242 (2016)

    Google Scholar 

  10. Jin, F., Ni, Z., Chen, H., Li, Y.: Approaches to group decision making with intuitionistic fuzzy preference relations based on multiplicative consistency. Knowl. Based Syst. 97, 48–59 (2016)

    Google Scholar 

  11. Meng, F.Y., Tang, J., Xu, Z.S.: A 0–1 mixed programming model based method for group decision making with intuitionistic fuzzy preference relations. Comput. Ind. Eng. 112, 289–304 (2017)

    Google Scholar 

  12. Wan, S., Wang, F., Dong, J.: Additive consistent interval-valued Atanassov intuitionistic fuzzy preference relation and likelihood comparison algorithm based group decision making. Eur. J. Oper. Res. 263, 571–582 (2017)

    MathSciNet  MATH  Google Scholar 

  13. Gong, Z.W., Zhang, N., Chiclana, F.: The optimization ordering model for intuitionistic fuzzy preference relations with utility functions. Knowl.-Based Syst. 162, 174–184 (2018)

    Google Scholar 

  14. Zhang, H.Y., Peng, H.G., Wang, J., Wang, J.Q.: An extended outranking approach for multi-criteria decision-making problems with linguistic intuitionistic fuzzy numbers. Appl. Soft Comput. 59, 462–474 (2017)

    Google Scholar 

  15. Meng, F.Y., Tang, J., Hamido, J.: Linguistic intuitionistic fuzzy preference relations and their application to multi-criteria decision making. Inform. Fusion 46, 77–90 (2019)

    Google Scholar 

  16. Liu, P.S., Diao, H.Y., Zou, L., Deng, A.S.: Uncertain multi-attribute group decision making based on linguistic-valued intuitionistic fuzzy preference relations, Information. Science 508, 293–308 (2020)

    MATH  Google Scholar 

  17. Meng, F.Y., Tang, J., Zhang, Y.L.: Programming model-based group decision making with multiplicative linguistic intuitionistic fuzzy preference relations. Comput. Ind. Eng. 136, 212–224 (2019)

    Google Scholar 

  18. Zhou, L.G., He, Y.D., Chen, H.Y., Liu, J.P.: On compatibility of uncertain multiplicative linguistic preference relations based on the linguistic COWGA. Appl. Intell. 40, 229–243 (2014)

    Google Scholar 

  19. Atanassov, K.T.: Intuitionistic Fuzzy Sets. Physica, Heidelberg (1999)

    MATH  Google Scholar 

  20. K.T. Atanassov. Intuitionistic fuzzy sets, VIIITKR session, Sofia, (1983), 20–23.

  21. Xu, Z.S.: Compatibility analysis of intuitionistic fuzzy preference relations in group decision making. Group Decis. Negot. 22(3), 463–482 (2013)

    Google Scholar 

  22. Chen, Z., Liu, P., Pei, Z.: An approach to multiple attribute group decision making based on linguistic intuitionistic fuzzy numbers. Int. J. Comput. Intell. Syst. 8(4), 747–760 (2015)

    Google Scholar 

  23. Liu, P.D., Wang, P., Pedrycz, W.: Consistency-and consensus-based group decision-making method with incomplete probabilistic linguistic preference relations. IEEE Trans. Fuzzy Syst. 29(9), 2565–2579 (2021)

    Google Scholar 

  24. Ren, P.J., Xu, Z.S., Wang, X.X., Zeng, X.J.: Group decision making with hesitant fuzzy linguistic preference relations based on modified extent measurement. Expert Syst. Appl. 171, 114235 (2021)

    Google Scholar 

  25. Tang, J., Chen, S.M., Meng, F.Y.: Group decision making with multiplicative interval linguistic hesitant fuzzy preference relations. Inf. Sci. 495, 215–233 (2019)

    MATH  Google Scholar 

  26. Zhang, Z.M., Chen, Y.M.: A consistency and consensus-based method for group decision making with hesitant fuzzy linguistic preference relations. Inf. Sci. 501, 317–336 (2019)

    MathSciNet  MATH  Google Scholar 

  27. Liu, N.N., He, Y., Xu, Z.S.: A new approach to deal with consistency and consensus issues for hesitant fuzzy linguistic preference relations. Appl. Soft Comput. J. 76, 400–415 (2019)

    Google Scholar 

  28. Wu, Z.B., Xu, J.P.: Managing consistency and consensus in group decision making with hesitant fuzzy linguistic preference relations. Omega 65, 28–40 (2016)

    Google Scholar 

  29. Zhang, Z., Li, Z., Gao, Y.: Consensus reaching for group decision making with multi-granular unbalanced linguistic information: a bounded confidence and minimum adjustment-based approach. Inf. fusion. 74, 96–110 (2021)

    Google Scholar 

  30. You, X., Hou, F.: A self-confidence and leadership based feedback mechanism for consensus of group decision making with probabilistic linguistic preference relation. Inf. Sci. 582, 547–572 (2022)

    MathSciNet  Google Scholar 

  31. Ren, P.: Group decision making with hesitant fuzzy linguistic preference relations based on modified extent measurement. Expert Syst. Appl. 171, 114235 (2021)

    Google Scholar 

  32. Li, C., Dong, Y., Herrera, F.: A Consensus model for large-scale linguistic group decision making with a feedback recommendation based on clustered personalized individual semantics and opposing consensus groups. IEEE Trans. Fuzzy Syst. 27(2), 221–233 (2019)

    Google Scholar 

  33. Li, S., Wei, C.: Modeling the Social Influence in Consensus Reaching Process with Interval Fuzzy Preference Relations. Int. J. Fuzzy Syst. 21(6), 1755–1770 (2019)

    MathSciNet  Google Scholar 

  34. Wan, S., Wang, F., Dong, J.: A group decision-making method considering both the group consensus and multiplicative consistency of interval-valued intuitionistic fuzzy preference relations. Inf. Sci. 466, 109–128 (2018)

    MathSciNet  MATH  Google Scholar 

  35. Liu, H.B., Jiang, L.: Optimizing consistency and consensus improvement process for hesitant fuzzy linguistic preference relations and the application in group decision making. Inf. Fusion. 56, 114–127 (2020)

    Google Scholar 

  36. Liu, H.B., Ma, Y., Jiang, L.: Managing incomplete preferences and consistency improvement in hesitant fuzzy linguistic preference relations with applications in group decision making. Inf. Fusion. 51, 19–29 (2019)

    Google Scholar 

  37. Zhang, Z., Chen, S.M.: Group decision making with hesitant fuzzy linguistic preference relations. Inf. Sci. 514, 354–368 (2020)

    MathSciNet  MATH  Google Scholar 

  38. Liu, P.S., Diao, H.Y., Zou, L., Deng, A.S.: Uncertain multi-attribute group decision making based on linguistic-valued intuitionistic fuzzy preference relations. Inf. Sci. 508, 293–308 (2020)

    MathSciNet  MATH  Google Scholar 

  39. Chen, H.P., Xu, G.Q.: Group decision making with incomplete intuitionistic fuzzy preference relations based on additive consistency. Comput. Ind. Eng. 135, 560–567 (2019)

    Google Scholar 

  40. Tang, J., Meng, F.Y., Zhang, Y.L.: Decision making with interval-valued intuitionistic fuzzy preference relations based on additive consistency analysis. Inf. Sci. 467, 115–134 (2018)

    MathSciNet  MATH  Google Scholar 

  41. Gong, Z.W., Tan, X., Yang, Y.J.: Optimal weighting models based on linear uncertain constraints in intuitionistic fuzzy preference relations. J. Oper. Res. Soc. 70(8), 1296–1307 (2019)

    Google Scholar 

  42. Wan, S.P., Wang, F., Dong, J.Y.: A three-phase method for group decision making with interval-valued intuitionistic fuzzy preference relations. IEEE Trans. Fuzzy Syst. 26(2), 998–1010 (2018)

    Google Scholar 

  43. Ghosh, S., Kumar Roy, S., Fugenschuh, A.: The multi-objective solid transportation problem with preservation technology using pythagorean fuzzy sets the multi-objective solid transportation problem. Int. J. Fuzzy Syst. (2022). https://doi.org/10.1007/s40815-021-01224-5

    Article  Google Scholar 

  44. Wang, G., Tao, Y., Li, Y.: TOPSIS evaluation system of logistics transportation based on an ordered representation of the polygonal fuzzy set. Int. J. Fuzzy Syst. 22(3), 1565–1581 (2020)

    Google Scholar 

  45. He, S., Pan, X., Wang, Y.: A shadowed set-based TODIM method and its application to large-scale group decision making. Inf. Sci. 544, 135–154 (2021)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was supported by the Natural Science Fund of Heilongjiang Province (QC2015089) and Fundamental Research Funds for the Central Universities (3072021CFP0902).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You Peng.

Appendices

Appendix A

Property 5

(the robust property)

Proof. (1) The sufficiency.□

Suppose the \(R_{s} = (d_{s_ ij} )_{n \times n}\) is additively consistent, and for each triple of (\(R_{s} = (d_{s_ ij} )_{n \times n}\)), let \(\delta (i) = k,\)\(\delta (k) = j\),\(\delta (j) = i\), then we have

$$E\left( {d_{{s\delta (i)\delta (k)}} } \right) \oplus E\left( {d_{{s\delta (k)\delta (j)}} } \right) = E\left( {d_{{skj}} } \right) \oplus E\left( {d_{{sji}} } \right)$$
$$E\left({d_{s\delta(i)\delta(j)}}\right)\oplus (\tau,\tau)=E\left({d_{ski}}\right)\oplus (\tau,\tau)$$

Following property 4, if \(R_{s} = (d_{s_ ij} )_{n \times n}\) is additively consistent, we have \({(}\sum\nolimits_{l = 1}^{{\# h_{sij} }} {\lambda_{ij}^{l} } p_{\alpha ij}^{l} s_{\alpha ij}^{l} ,\sum\nolimits_{{l^{\prime} { = 1}}}^{{\# g_{sij} }} {\lambda_{ij}^{{l^{\prime} }} p_{\beta ij}^{{l^{\prime} }} s_{\beta ij}^{{l^{\prime} }} } ) \oplus (\sum\nolimits_{l = 1}^{{\# h_{sij} }} {(1 - \lambda_{ij}^{l} )} \sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{sij} }} {\xi_{ji}^{{l^{\prime} }} p_{\alpha ij}^{l} s_{2\tau } s_{\alpha ji}^{{l^{\prime} }} } ,\sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{sij} }} {(1 - \lambda_{ij}^{{l^{\prime} }} )} \sum\nolimits_{l = 1}^{{\# h_{sij} }} {\xi_{ji}^{l} p_{\beta ij}^{{l^{\prime} }} s_{2\tau } s_{\beta ji}^{l} } )) \oplus (s_{\tau } ,s_{\tau } )=\)\({(}\sum\nolimits_{l = 1}^{{\# h_{sik} }} {\lambda_{ik}^{l} } p_{\alpha ik}^{l} s_{\alpha ik}^{l} ,\)\(\sum\nolimits_{{l^{\prime} { = 1}}}^{{\# g_{sik} }} {\lambda_{ik}^{{l^{\prime} }} p_{\beta ik}^{{l^{\prime} }} s_{\beta ik}^{{l^{\prime} }} } )\)\(\oplus (\sum\nolimits_{l = 1}^{{\# h_{sik} }} {(1 - \lambda_{ik}^{l} )} \sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{sik} }} {\xi_{ki}^{{l^{\prime} }} p_{\alpha ik}^{l} s_{2\tau } s_{\alpha ki}^{{l^{\prime} }} } ,\sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{sik} }} {(1 - \lambda_{ik}^{{l^{\prime} }} )} \sum\nolimits_{l = 1}^{{\# h_{sik} }} {\xi_{ki}^{l} p_{\beta ik}^{{l^{\prime} }} s_{2\tau } s_{\beta ki}^{l} } )) \oplus\)\({(}\sum\nolimits_{l = 1}^{{\# h_{skj} }} {\lambda_{kj}^{l} } p_{\alpha kj}^{l} s_{\alpha kj}^{l} ,\sum\nolimits_{{l^{\prime} { = 1}}}^{{\# g_{skj} }} {\lambda_{kj}^{{l^{\prime} }} p_{\beta kj}^{{l^{\prime} }} s_{\beta kj}^{{l^{\prime} }} } ) \oplus (\sum\nolimits_{l = 1}^{{\# h_{skj} }} {(1 - \lambda_{kj}^{l} )} \sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{skj} }} {\xi_{jk}^{{l^{\prime} }} p_{\alpha kj}^{l} s_{2\tau } s_{\alpha jk}^{{l^{\prime} }} } ,\)\(\sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{skj} }} {(1 - \lambda_{kj}^{{l^{\prime} }} )} \sum\nolimits_{l = 1}^{{\# h_{skj} }} {\xi_{jk}^{l} p_{\beta kj}^{{l^{\prime} }} s_{2\tau } s_{\beta jk}^{l} } ))\), namely, \(\begin{aligned} \left\{ \begin{aligned} \sum\nolimits_{l = 1}^{{\# h_{sij} }} {\lambda_{ij}^{l} } p_{\alpha ij}^{l} s_{\alpha ij}^{l} \oplus \sum\nolimits_{l = 1}^{{\# h_{sij} }} {(1 - \lambda_{ij}^{l} )} \sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{sij} }} {\xi_{ji}^{{l^{\prime} }} p_{\alpha ij}^{l} s_{2\tau } s_{\alpha ji}^{{l^{\prime} }} } \oplus s_{\tau } { = (}\sum\nolimits_{l = 1}^{{\# h_{sik} }} {\lambda_{ik}^{l} } p_{\alpha ik}^{l} s_{\alpha ik}^{l} \oplus \sum\nolimits_{l = 1}^{{\# h_{sik} }} {(1 - \lambda_{ik}^{l} )} \sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{sik} }} {\xi_{ki}^{{l^{\prime} }} p_{\alpha ik}^{l} s_{2\tau } s_{\alpha ki}^{{l^{\prime} }} } ) \oplus (\sum\nolimits_{l = 1}^{{\# h_{skj} }} {\lambda_{kj}^{l} } p_{\alpha kj}^{l} s_{\alpha kj}^{l} \oplus \sum\nolimits_{l = 1}^{{\# h_{skj} }} {(1 - \lambda_{kj}^{l} )} \sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{skj} }} {\xi_{jk}^{{l^{\prime} }} p_{\alpha kj}^{l} s_{2\tau } s_{\alpha jk}^{{l^{\prime} }} } ) \hfill \\ \sum\nolimits_{{l^{\prime} { = 1}}}^{{\# g_{sij} }} {\lambda_{ij}^{{l^{\prime} }} p_{\beta ij}^{{l^{\prime} }} s_{\beta ij}^{{l^{\prime} }} } \oplus \sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{sij} }} {(1 - \lambda_{ij}^{{l^{\prime} }} )} \sum\nolimits_{l = 1}^{{\# h_{sij} }} {\xi_{ji}^{l} p_{\beta ij}^{{l^{\prime} }} s_{2\tau } s_{\beta ji}^{l} } \oplus s_{\tau } = (\sum\nolimits_{{l^{\prime} { = 1}}}^{{\# g_{sik} }} {\lambda_{ik}^{{l^{\prime} }} p_{\beta ik}^{{l^{\prime} }} s_{\beta ik}^{{l^{\prime} }} \oplus \sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{sik} }} {(1 - \lambda_{ik}^{{l^{\prime} }} )} \sum\nolimits_{l = 1}^{{\# h_{sik} }} {\xi_{ki}^{l} p_{\beta ik}^{{l^{\prime} }} s_{2\tau } s_{\beta ki}^{l} } ) \oplus (\sum\nolimits_{{l^{\prime} { = 1}}}^{{\# g_{skj} }} {\lambda_{kj}^{{l^{\prime} }} p_{\beta kj}^{{l^{\prime} }} s_{\beta kj}^{{l^{\prime} }} } \oplus \sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{skj} }} {(1 - \lambda_{kj}^{{l^{\prime} }} )} \sum\nolimits_{l = 1}^{{\# h_{skj} }} {\xi_{jk}^{l} p_{\beta kj}^{{l^{\prime} }} s_{2\tau } s_{\beta jk}^{l} } )} \hfill \\ \end{aligned} \right. \hfill \\ \hfill \\ \end{aligned}\)

Since, \(\begin{aligned} \sum\nolimits_{{l = 1}}^{{\# h_{{sij}} }} {\lambda _{{ij}}^{l} } p_{{\alpha ij}}^{l} s_{{\alpha ij}}^{l} \oplus \sum\nolimits_{{l = 1}}^{{\# h_{{sij}} }} {(1 - \lambda _{{ij}}^{l} )} \sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{{sij}} }} {\xi _{{ji}}^{{l^{\prime} }} p_{{\alpha ij}}^{l} s_{{2\tau }} s_{{\alpha ji}}^{{l^{\prime} }} } \oplus s_{\tau } = (\sum\nolimits_{{l = 1}}^{{\# h_{{sik}} }} {\lambda _{{ik}}^{l} } p_{{\alpha ik}}^{l} s_{{\alpha ik}}^{l} \oplus \sum\nolimits_{{l = 1}}^{{\# h_{{sik}} }} {(1 - \lambda _{{ik}}^{l} )} \sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{{sik}} }} {\xi _{{ki}}^{{l^{\prime} }} p_{{\alpha ik}}^{l} s_{{2\tau }} s_{{\alpha ki}}^{{l^{\prime} }} } ) \oplus (\sum\nolimits_{{l = 1}}^{{\# h_{{skj}} }} {\lambda _{{kj}}^{l} } p_{{\alpha kj}}^{l} s_{{\alpha kj}}^{l} \oplus \sum\nolimits_{{l = 1}}^{{\# h_{{skj}} }} {(1 - \lambda _{{kj}}^{l} )} \sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{{skj}} }} {\xi _{{jk}}^{{l^{\prime} }} p_{{\alpha kj}}^{l} s_{{2\tau }} s_{{\alpha jk}}^{{l^{\prime} }} } ) \hfill \\ \Rightarrow \sum\nolimits_{{l = 1}}^{{\# h_{{sik}} }} {(((} \lambda _{{ik}}^{l} - 1)\sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{{sik}} }} {\xi _{{ki}}^{{l^{\prime} }} p_{{\alpha ik}}^{l} s_{{2\tau }} s_{{\alpha ki}}^{{l^{\prime} }} ) - \lambda _{{ik}}^{l} p_{{\alpha ik}}^{l} s_{{\alpha ik}}^{l} )} \oplus s_{\tau } = \sum\nolimits_{{l = 1}}^{{\# h_{{sij}} }} {(((\lambda _{{ij}}^{l} - 1)\sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{{sij}} }} {\xi _{{ji}}^{{l^{\prime} }} p_{{\alpha ij}}^{l} s_{{2\tau }} s_{{\alpha ji}}^{{l^{\prime} }} )} } - \lambda _{{ij}}^{l} p_{{\alpha ij}}^{l} s_{{\alpha ij}}^{l} ) \oplus (\sum\nolimits_{{l = 1}}^{{\# h_{{skj}} }} {\lambda _{{kj}}^{l} } p_{{\alpha kj}}^{l} s_{{\alpha kj}}^{l} \oplus \sum\nolimits_{{l = 1}}^{{\# h_{{skj}} }} {(1 - \lambda _{{kj}}^{l} )} \sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{{skj}} }} {\xi _{{jk}}^{{l^{\prime} }} p_{{\alpha kj}}^{l} s_{{2\tau }} s_{{\alpha jk}}^{{l^{\prime} }} } ) \hfill \\ \Rightarrow \sum\nolimits_{{l = 1}}^{{\# h_{{sik}} }} {(((} \lambda _{{ik}}^{l} - 1)\sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{{sik}} }} {\xi _{{ki}}^{{l^{\prime} }} p_{{\alpha ik}}^{l} (s_{{2\tau }} - s_{{\alpha ki}}^{{l^{\prime} }} )) - \lambda _{{ik}}^{l} p_{{\alpha ik}}^{l} s_{{\alpha ik}}^{l} )} \oplus s_{\tau } = \sum\nolimits_{{l = 1}}^{{\# h_{{sij}} }} {(((\lambda _{{ij}}^{l} - 1)\sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{{sij}} }} {\xi _{{ji}}^{{l^{\prime} }} p_{{\alpha ij}}^{l} (s_{{2\tau }} - s_{{\alpha ji}}^{{l^{\prime} }} } } )) - \lambda _{{ij}}^{l} p_{{\alpha ij}}^{l} s_{{\alpha ij}}^{l} ) \oplus (\sum\nolimits_{{l = 1}}^{{\# h_{{skj}} }} {\lambda _{{kj}}^{l} } p_{{\alpha kj}}^{l} s_{{\alpha kj}}^{l} \oplus \sum\nolimits_{{l = 1}}^{{\# h_{{skj}} }} {(1 - \lambda _{{kj}}^{l} )} \sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{{skj}} }} {\xi _{{jk}}^{{l^{\prime} }} p_{{\alpha kj}}^{l} s_{{2\tau }} s_{{\alpha jk}}^{{l^{\prime} }} } ) \hfill \\ \Rightarrow \sum\nolimits_{{l = 1}}^{{\# h_{{sik}} }} {(((} \lambda _{{ik}}^{l} - 1)\sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{{sik}} }} {\xi _{{ki}}^{{l^{\prime} }} p_{{\alpha ik}}^{l} s_{{2\tau }} ) - ((\lambda _{{ik}}^{l} - 1)\sum\nolimits_{{l^{\prime} }}^{{\# g_{{sik}} }} {\xi _{{ki}}^{{l^{\prime} }} p_{{\alpha ik}}^{l} s_{{\alpha ki}}^{{l^{\prime} }} )} - \lambda _{{ik}}^{l} p_{{\alpha ik}}^{l} s_{{\alpha ik}}^{l} )} \oplus s_{\tau } = \sum\nolimits_{{l = 1}}^{{\# h_{{sij}} }} {(((\lambda _{{ij}}^{l} - 1)\sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{{sij}} }} {\xi _{{ji}}^{{l^{\prime} }} p_{{\alpha ij}}^{l} s_{{2\tau }} } } ) - ((\lambda _{{ij}}^{l} - 1)\sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{{sij}} }} {\xi _{{ji}}^{{l^{\prime} }} p_{{\alpha ij}}^{l} s_{{\alpha ji}}^{{l^{\prime} }} )} - \lambda _{{ij}}^{l} p_{{\alpha ij}}^{l} s_{{\alpha ij}}^{l} ) \oplus (\sum\nolimits_{{l = 1}}^{{\# h_{{skj}} }} {\lambda _{{kj}}^{l} } p_{{\alpha kj}}^{l} s_{{\alpha kj}}^{l} \oplus \sum\nolimits_{{l = 1}}^{{\# h_{{skj}} }} {(1 - \lambda _{{kj}}^{l} )} \sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{{skj}} }} {\xi _{{jk}}^{{l^{\prime} }} p_{{\alpha kj}}^{l} s_{{2\tau }} s_{{\alpha jk}}^{{l^{\prime} }} } ) \hfill \\ \Rightarrow \sum\nolimits_{{l = 1}}^{{\# h_{{sik}} }} {(((1 - \lambda _{{ik}}^{l} )\sum\nolimits_{{l^{\prime} }}^{{\# g_{{sik}} }} {\xi _{{ki}}^{{l^{\prime} }} p_{{\alpha ik}}^{l} s_{{\alpha ki}}^{{l^{\prime} }} ) \oplus } (} \lambda _{{ik}}^{l} ((\sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{{sik}} }} {\xi _{{ki}}^{{l^{\prime} }} p_{{\alpha ik}}^{l} s_{{2\tau }} ) - p_{{\alpha ik}}^{l} s_{{\alpha ik}}^{l} ))} - \sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{{sik}} }} {\xi _{{ki}}^{{l^{\prime} }} p_{{\alpha ik}}^{l} s_{{2\tau }} )} \oplus s_{\tau } = \sum\nolimits_{{l = 1}}^{{\# h_{{sij}} }} {(((1 - \lambda _{{ij}}^{l} )\sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{{sij}} }} {\xi _{{ji}}^{{l^{\prime} }} p_{{\alpha ij}}^{l} s_{{\alpha ji}}^{{l^{\prime} }} ) \oplus } \lambda _{{ij}}^{l} ((\sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{{sij}} }} {\xi _{{ji}}^{{l^{\prime} }} p_{{\alpha ij}}^{l} s_{{2\tau }} ) - p_{{\alpha ij}}^{l} s_{{\alpha ij}}^{l} } } )) - \sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{{sij}} }} {\xi _{{ji}}^{{l^{\prime} }} p_{{\alpha ij}}^{l} s_{{2\tau }} } ) \oplus (\sum\nolimits_{{l = 1}}^{{\# h_{{skj}} }} {\lambda _{{kj}}^{l} } p_{{\alpha kj}}^{l} s_{{\alpha kj}}^{l} \oplus \sum\nolimits_{{l = 1}}^{{\# h_{{skj}} }} {(1 - \lambda _{{kj}}^{l} )} \sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{{skj}} }} {\xi _{{jk}}^{{l^{\prime} }} p_{{\alpha kj}}^{l} s_{{2\tau }} s_{{\alpha jk}}^{{l^{\prime} }} } ) \hfill \\ \Rightarrow \sum\nolimits_{{l = 1}}^{{\# h_{{sik}} }} {(((1 - \lambda _{{ik}}^{l} )\sum\nolimits_{{l^{\prime} }}^{{\# g_{{sik}} }} {\xi _{{ki}}^{{l^{\prime} }} p_{{\alpha ik}}^{l} s_{{\alpha ki}}^{{l^{\prime} }} ) \oplus } (} \lambda _{{ik}}^{l} ((\sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{{sik}} }} {\xi _{{ki}}^{{l^{\prime} }} p_{{\alpha ik}}^{l} s_{{2\tau }} ) - p_{{\alpha ik}}^{l} s_{{\alpha ik}}^{l} ))} - s_{{2\tau }} \oplus s_{\tau } = \sum\nolimits_{{l = 1}}^{{\# h_{{sij}} }} {(1 - \lambda _{{ij}}^{l} )\sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{{sij}} }} {\xi _{{ji}}^{{l^{\prime} }} p_{{\alpha ij}}^{l} s_{{\alpha ji}}^{{l^{\prime} }} \oplus } \lambda _{{ij}}^{l} ((\sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{{sij}} }} {\xi _{{ji}}^{{l^{\prime} }} p_{{\alpha ij}}^{l} s_{{2\tau }} ) - p_{{\alpha ij}}^{l} s_{{\alpha ij}}^{l} } } )) - s_{{2\tau }} \oplus (\sum\nolimits_{{l = 1}}^{{\# h_{{skj}} }} {\lambda _{{kj}}^{l} } p_{{\alpha kj}}^{l} s_{{\alpha kj}}^{l} \oplus \sum\nolimits_{{l = 1}}^{{\# h_{{skj}} }} {(1 - \lambda _{{kj}}^{l} )} \sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{{skj}} }} {\xi _{{jk}}^{{l^{\prime} }} p_{{\alpha kj}}^{l} s_{{2\tau }} s_{{\alpha jk}}^{{l^{\prime} }} } ) \hfill \\ \Rightarrow (\sum\nolimits_{{l = 1}}^{{\# h_{{sik}} }} {(1 - \lambda _{{ik}}^{l} )\sum\nolimits_{{l^{\prime} }}^{{\# g_{{sik}} }} {\xi _{{ki}}^{{l^{\prime} }} p_{{\alpha ik}}^{l} s_{{\alpha ki}}^{{l^{\prime} }} ) \oplus } \sum\nolimits_{{l = 1}}^{{\# h_{{sik}} }} {\lambda _{{ik}}^{l} p_{{\alpha ik}}^{l} (s_{{2\tau }} - s_{{\alpha ik}}^{l} )) \oplus s_{\tau } = } } (\sum\nolimits_{{l = 1}}^{{\# h_{{sij}} }} {(1 - \lambda _{{ij}}^{l} )\sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{{sij}} }} {\xi _{{ji}}^{{l^{\prime} }} p_{{\alpha ij}}^{l} s_{{\alpha ji}}^{{l^{\prime} }} \oplus } } \sum\nolimits_{{l^{\prime} }}^{{\# g_{{sij}} }} {\lambda _{{ij}}^{l} p_{{\alpha ij}}^{l} (s_{{2\tau }} - s_{{\alpha ij}}^{l} )) \oplus (\sum\nolimits_{{l = 1}}^{{\# h_{{skj}} }} {\lambda _{{kj}}^{l} } p_{{\alpha kj}}^{l} s_{{\alpha kj}}^{l} \oplus \sum\nolimits_{{l = 1}}^{{\# h_{{skj}} }} {(1 - \lambda _{{kj}}^{l} )} \sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{{skj}} }} {\xi _{{jk}}^{{l^{\prime} }} p_{{\alpha kj}}^{l} s_{{2\tau }} s_{{\alpha jk}}^{{l^{\prime} }} } } ) \hfill \\ \Rightarrow (\sum\nolimits_{{l = 1}}^{{\# h_{{sik}} }} {(1 - \lambda _{{ik}}^{l} )\sum\nolimits_{{l^{\prime} }}^{{\# g_{{sik}} }} {\xi _{{ki}}^{{l^{\prime} }} p_{{\alpha ik}}^{l} s_{{\alpha ki}}^{{l^{\prime} }} ) \oplus } \sum\nolimits_{{l = 1}}^{{\# h_{{sik}} }} {\lambda _{{ik}}^{l} p_{{\alpha ik}}^{l} s_{{2\tau }} s_{{\alpha ik}}^{l} ) \oplus s_{\tau } = } } (\sum\nolimits_{{l = 1}}^{{\# h_{{sij}} }} {(1 - \lambda _{{ij}}^{l} )\sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{{sij}} }} {\xi _{{ji}}^{{l^{\prime} }} p_{{\alpha ij}}^{l} s_{{\alpha ji}}^{{l^{\prime} }} \oplus } } \sum\nolimits_{{l^{\prime} }}^{{\# g_{{sij}} }} {\lambda _{{ij}}^{l} p_{{\alpha ij}}^{l} s_{{2\tau }} s_{{\alpha ij}}^{l} ) \oplus (\sum\nolimits_{{l = 1}}^{{\# h_{{skj}} }} {\lambda _{{kj}}^{l} } p_{{\alpha kj}}^{l} s_{{\alpha kj}}^{l} \oplus \sum\nolimits_{{l = 1}}^{{\# h_{{skj}} }} {(1 - \lambda _{{kj}}^{l} )} \sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{{skj}} }} {\xi _{{jk}}^{{l^{\prime} }} p_{{\alpha kj}}^{l} s_{{2\tau }} s_{{\alpha jk}}^{{l^{\prime} }} } } ) \hfill \\ \end{aligned}\) Thus, we have

\(\left\{ \begin{aligned} \sum\limits_{l = 1}^{{\# h_{sik} }} {(1 - \lambda_{ik}^{l} )\sum\limits_{{l^{\prime} }}^{{\# g_{sik} }} {\xi_{ki}^{{l^{\prime} }} p_{\alpha ik}^{l} s_{\alpha ki}^{{l^{\prime} }} \oplus } \sum\limits_{l = 1}^{{\# h_{sik} }} {\lambda_{ik}^{l} p_{\alpha ik}^{l} s_{2\tau } s_{\alpha ik}^{l} \oplus \tau } } = (\sum\limits_{l = 1}^{{\# h_{sij} }} {(1 - \lambda_{ij}^{l} )\sum\limits_{{l^{\prime} = 1}}^{{\# g_{sij} }} {\xi_{ji}^{{l^{\prime} }} p_{\alpha ij}^{l} s_{\alpha ji}^{{l^{\prime} }} \oplus } } \sum\limits_{{l^{\prime} }}^{{\# g_{sij} }} {\lambda_{ij}^{l} p_{\alpha ij}^{l} s_{2\tau } s_{\alpha ij}^{l} ) \oplus (\sum\limits_{l = 1}^{{\# h_{skj} }} {\lambda_{kj}^{l} } p_{\alpha kj}^{l} s_{\alpha kj}^{l} \oplus \sum\limits_{l = 1}^{{\# h_{skj} }} {(1 - \lambda_{kj}^{l} )} \sum\limits_{{l^{\prime} = 1}}^{{\# g_{skj} }} {\xi_{jk}^{{l^{\prime} }} p_{\alpha kj}^{l} s_{2\tau } s_{\alpha jk}^{{l^{\prime} }} } )} \hfill \\ \sum\limits_{{l^{\prime} = 1}}^{{\# g_{sik} }} {(1 - \lambda_{ik}^{{l^{\prime} }} )} \sum\limits_{l = 1}^{{\# h_{sik} }} {\xi_{ki}^{l} p_{\beta ik}^{{l^{\prime} }} s_{\beta ki}^{l} \oplus } \sum\limits_{{l^{\prime} = 1}}^{{\# g_{sik} }} {\lambda_{ik}^{{l^{\prime} }} } p_{\beta ik}^{{l^{\prime} }} s_{2\tau } s_{\beta ik}^{l} \oplus \tau = (\sum\limits_{{l^{\prime} = 1}}^{{\# g_{sij} }} {(1 - \lambda_{ij}^{{l^{\prime} }} )} \sum\limits_{l = 1}^{{\# h_{sij} }} {\xi_{ji}^{l} p_{\beta ij}^{{l^{\prime} }} s_{2\tau } s_{\beta ji}^{l} } \oplus \sum\limits_{{l^{\prime} { = 1}}}^{{\# g_{sij} }} {\lambda_{ij}^{{l^{\prime} }} p_{\beta ij}^{{l^{\prime} }} s_{2\tau } s_{\beta ij}^{{l^{\prime} }} ) \oplus (\sum\limits_{{l^{\prime} { = 1}}}^{{\# g_{skj} }} {\lambda_{kj}^{{l^{\prime} }} p_{\beta kj}^{{l^{\prime} }} s_{\beta kj}^{{l^{\prime} }} } \oplus \sum\limits_{{l^{\prime} = 1}}^{{\# g_{skj} }} {(1 - \lambda_{kj}^{{l^{\prime} }} )} \sum\limits_{l = 1}^{{\# h_{skj} }} {\xi_{jk}^{l} p_{\beta kj}^{{l^{\prime} }} s_{2\tau } s_{\beta jk}^{l} } )} \hfill \\ \end{aligned} \right.\), Namely, \(\left\{ \begin{aligned} \sum\limits_{l = 1}^{{\# h_{sik} }} {\lambda_{ki}^{l} \sum\limits_{{l^{\prime} }}^{{\# g_{sik} }} {\xi_{ki}^{{l^{\prime} }} p_{\alpha ik}^{l} s_{\alpha ki}^{{l^{\prime} }} \oplus } \sum\limits_{l = 1}^{{\# h_{sik} }} {(1 - \lambda_{ki}^{l} )p_{\alpha ik}^{l} s_{2\tau } s_{\alpha ik}^{l} \oplus \tau } } = (\sum\limits_{l = 1}^{{\# h_{sij} }} {\lambda_{ji}^{l} \sum\limits_{{l^{\prime} = 1}}^{{\# g_{sij} }} {\xi_{ji}^{{l^{\prime} }} p_{\alpha ij}^{l} s_{\alpha ji}^{{l^{\prime} }} \oplus } } \sum\limits_{{l^{\prime} }}^{{\# g_{sij} }} {(1 - \lambda_{ji}^{l} )p_{\alpha ij}^{l} s_{2\tau } s_{\alpha ij}^{l} ) \oplus (\sum\limits_{l = 1}^{{\# h_{skj} }} {\lambda_{kj}^{l} } p_{\alpha kj}^{l} s_{\alpha kj}^{l} \oplus \sum\limits_{l = 1}^{{\# h_{skj} }} {(1 - \lambda_{kj}^{l} )} \sum\limits_{{l^{\prime} = 1}}^{{\# g_{skj} }} {\xi_{jk}^{{l^{\prime} }} p_{\alpha kj}^{l} s_{2\tau } s_{\alpha jk}^{{l^{\prime} }} } )} \hfill \\ \sum\limits_{{l^{\prime} = 1}}^{{\# g_{sik} }} {\lambda_{ki}^{{l^{\prime} }} } \sum\limits_{l = 1}^{{\# h_{sik} }} {\xi_{ki}^{l} p_{\beta ik}^{{l^{\prime} }} s_{\beta ki}^{l} \oplus } \sum\limits_{{l^{\prime} = 1}}^{{\# g_{sik} }} {(1 - \lambda_{ki}^{{l^{\prime} }} } )p_{\beta ik}^{{l^{\prime} }} s_{2\tau } s_{\beta ik}^{l} \oplus \tau = (\sum\limits_{{l^{\prime} = 1}}^{{\# g_{sij} }} {\lambda_{ji}^{{l^{\prime} }} } \sum\limits_{l = 1}^{{\# h_{sij} }} {\xi_{ji}^{l} p_{\beta ij}^{{l^{\prime} }} s_{2\tau } s_{\beta ji}^{l} } \oplus \sum\limits_{{l^{\prime} { = 1}}}^{{\# g_{sij} }} {(1 - \lambda_{ji}^{l} )p_{\beta ij}^{{l^{\prime} }} s_{2\tau } s_{\beta ij}^{{l^{\prime} }} ) \oplus (\sum\limits_{{l^{\prime} { = 1}}}^{{\# g_{skj} }} {\lambda_{kj}^{{l^{\prime} }} p_{\beta kj}^{{l^{\prime} }} s_{\beta kj}^{{l^{\prime} }} } \oplus \sum\limits_{{l^{\prime} = 1}}^{{\# g_{skj} }} {(1 - \lambda_{kj}^{{l^{\prime} }} )} \sum\limits_{l = 1}^{{\# h_{skj} }} {\xi_{jk}^{l} p_{\beta kj}^{{l^{\prime} }} s_{2\tau } s_{\beta jk}^{l} } )} \hfill \\ \end{aligned} \right.\) In which,\(\lambda_{ki}^{l} ,\lambda_{ki}^{{l^{\prime} }} ,\lambda_{ji}^{l} ,\lambda_{ji}^{{l^{\prime} }}\) be the 0–1 indicator variable with \(\lambda_{ij}^{l} + \lambda_{ji}^{l} = 1,\lambda_{ik}^{{l^{\prime} }} + \lambda_{ki}^{{l^{\prime} }} = 1\).

Then, we can further obtain

\(E(d_{ski} ) \oplus (\tau ,\tau ) = E(d_{skj} ) \oplus E(d_{s\delta ji} )\).

Thus, we have \(E(d_{s\delta (i)\delta (j)} ) \oplus (s_{\tau } ,s_{\tau } ) = E(d_{s\delta (i)\delta (k)} ) \oplus E(d_{s\delta (k)\delta (j)} )\) held.

(2) The necessity.

Similar to the above procedure, the necessity can be easily derived, the detailed proof process is omitted here.

Appendix B

Notation List

Notation List

IFPRs

Intuitionistic fuzzy preference relations

GDM

Group decision making

LDHFPRs

Linguistic dual hesitant fuzzy preference relations

DM

Decision makers

FPRs

Fuzzy preference relations

MPRs

Multiplicative preference relations

LPRs

Linguistic preference relations

AHP

Analytic hierarchy processes

LIFVs

LIFPRs

LVIFPRs

MLIFPRs

PLDHFPRs

RCLIFPRs

RCLIFV

IFSs

LDHFS

LDHFV

ELDHFV

PLDHFV

RCLDHFV

PCLDHFPRs

CRP

Linguistic intuitionistic fuzzy variables

Linguistic intuitionistic fuzzy preference relations

Linguistic-valued intuitionistic fuzzy preference relations

Multiplicative linguistic intuitionistic fuzzy preference relations

Probability linguistic dual hesitant fuzzy preference relations

Reverse complementary linguistic intuitionistic fuzzy preference relations

Reverse complementary linguistic intuitionistic fuzzy variables

Intuitionistic fuzzy sets

Linguistic dual hesitant fuzzy set

Linguistic dual hesitant fuzzy value

Equivalent linguistic dual hesitant fuzzy value

Possibility linguistic dual hesitant fuzzy value

Reverse complementary linguistic dual hesitant fuzzy value

Reverse complementary linguistic dual hesitant fuzzy preference relations

Consensus reaching process

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, Y., Peng, Y. & Wu, Y. Linguistic Dual Hesitant Fuzzy Preference Relations and Their Application in Group Decision-Making. Int. J. Fuzzy Syst. 25, 1105–1130 (2023). https://doi.org/10.1007/s40815-022-01427-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-022-01427-4

Keywords