Abstract
Intuitionistic fuzzy preference relations (IFPRs) can not only deal with the uncertainty and vagueness of decision makers’ judgments but also describe the information from the aspects of preferred and non-preferred, respectively. Thus, it has proved to be an efficient tool for solving group decision-making (GDM) problems. However, considering the expression of linguistic information of the current extended IFPRs is limited by a single linguistic term, it is still imperfect to deal with GDM problems. Hence, this paper first proposes a novel extended IFPRs as linguistic dual hesitant fuzzy preference relations (LDHFPRs) by utilizing a set of ordered linguistic terms to describe the preferred and non-preferred evaluation information, which recognize the uncertainty and hesitance of each decision maker and conform to real-life decision-making situations better. Subsequently, we construct the conditions of additive consistency and develop a maximum consistency linear programming model to cope with the problem of inconsistent LDHFPRs. Furthermore, a novel consensus reaching process which pays more attention to the minority but important individual opinions is established. Finally, a real-world application is utilized to demonstrate the effectiveness of the proposed method, and a comparison with the existing related works is presented to show the advantages and innovation of the proposed GDM method.




Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data Availability
All data, models, or code generated or used during the study are available from the corresponding author by request.
References
Bustince, H., Burillo, P.: Structures on intuitionistic fuzzy relations. Fuzzy Sets Syst. 78, 293–303 (1996)
Bustince, H.: Construction of intuitionistic fuzzy relations with predetermined properties. Fuzzy Sets Syst. 109, 379–403 (2000)
Xu, Z.S., Cai, X.Q.: Group Decision Making with Incomplete Interval-Valued Intuitionistic Preference Relations. Group Decis. Negot. 24(2), 193–215 (2015)
Wu, J., Chiclana, F.: Non-dominance and attitudinal prioritisation methods for intuitionistic and interval-valued intuitionistic fuzzy preference relations. Expert Syst. Appl. 39, 13409–13416 (2012)
Wu, J., Chiclana, F.: Multiplicative consistency of intuitionistic reciprocal preference relations and its application to missing values estimation and consensus building, Knowledge Based. System 71, 187–200 (2014)
Liao, H.C., Xu, Z.S.: Consistency of the fused intuitionistic fuzzy preference relation in group intuitionistic fuzzy analytic hierarchy process. Appl. Soft Comput. 35, 812–826 (2015)
Wan, S.P., Xu, G.L., Dong, J.Y.: A novel method for group decision making with interval-valued Atanassov intuitionistic fuzzy preference relations. Inf. Sci. (Ny) 372, 53–71 (2016)
Xu, G.L., Wan, S.P., Wang, F., Dong, J.Y., Zeng, Y.F.: Mathematical programming methods for consistency and consensus in group decision making with intuitionistic fuzzy preference relations. Knowl. Based Syst. 98, 30–43 (2016)
Chu, J., Liu, X., Wang, Y., Chin, K.S.: A group decision making model considering both the additive consistency and group consensus of intuitionistic fuzzy preference relations. Comput. Ind. Eng. 101, 227–242 (2016)
Jin, F., Ni, Z., Chen, H., Li, Y.: Approaches to group decision making with intuitionistic fuzzy preference relations based on multiplicative consistency. Knowl. Based Syst. 97, 48–59 (2016)
Meng, F.Y., Tang, J., Xu, Z.S.: A 0–1 mixed programming model based method for group decision making with intuitionistic fuzzy preference relations. Comput. Ind. Eng. 112, 289–304 (2017)
Wan, S., Wang, F., Dong, J.: Additive consistent interval-valued Atanassov intuitionistic fuzzy preference relation and likelihood comparison algorithm based group decision making. Eur. J. Oper. Res. 263, 571–582 (2017)
Gong, Z.W., Zhang, N., Chiclana, F.: The optimization ordering model for intuitionistic fuzzy preference relations with utility functions. Knowl.-Based Syst. 162, 174–184 (2018)
Zhang, H.Y., Peng, H.G., Wang, J., Wang, J.Q.: An extended outranking approach for multi-criteria decision-making problems with linguistic intuitionistic fuzzy numbers. Appl. Soft Comput. 59, 462–474 (2017)
Meng, F.Y., Tang, J., Hamido, J.: Linguistic intuitionistic fuzzy preference relations and their application to multi-criteria decision making. Inform. Fusion 46, 77–90 (2019)
Liu, P.S., Diao, H.Y., Zou, L., Deng, A.S.: Uncertain multi-attribute group decision making based on linguistic-valued intuitionistic fuzzy preference relations, Information. Science 508, 293–308 (2020)
Meng, F.Y., Tang, J., Zhang, Y.L.: Programming model-based group decision making with multiplicative linguistic intuitionistic fuzzy preference relations. Comput. Ind. Eng. 136, 212–224 (2019)
Zhou, L.G., He, Y.D., Chen, H.Y., Liu, J.P.: On compatibility of uncertain multiplicative linguistic preference relations based on the linguistic COWGA. Appl. Intell. 40, 229–243 (2014)
Atanassov, K.T.: Intuitionistic Fuzzy Sets. Physica, Heidelberg (1999)
K.T. Atanassov. Intuitionistic fuzzy sets, VIIITKR session, Sofia, (1983), 20–23.
Xu, Z.S.: Compatibility analysis of intuitionistic fuzzy preference relations in group decision making. Group Decis. Negot. 22(3), 463–482 (2013)
Chen, Z., Liu, P., Pei, Z.: An approach to multiple attribute group decision making based on linguistic intuitionistic fuzzy numbers. Int. J. Comput. Intell. Syst. 8(4), 747–760 (2015)
Liu, P.D., Wang, P., Pedrycz, W.: Consistency-and consensus-based group decision-making method with incomplete probabilistic linguistic preference relations. IEEE Trans. Fuzzy Syst. 29(9), 2565–2579 (2021)
Ren, P.J., Xu, Z.S., Wang, X.X., Zeng, X.J.: Group decision making with hesitant fuzzy linguistic preference relations based on modified extent measurement. Expert Syst. Appl. 171, 114235 (2021)
Tang, J., Chen, S.M., Meng, F.Y.: Group decision making with multiplicative interval linguistic hesitant fuzzy preference relations. Inf. Sci. 495, 215–233 (2019)
Zhang, Z.M., Chen, Y.M.: A consistency and consensus-based method for group decision making with hesitant fuzzy linguistic preference relations. Inf. Sci. 501, 317–336 (2019)
Liu, N.N., He, Y., Xu, Z.S.: A new approach to deal with consistency and consensus issues for hesitant fuzzy linguistic preference relations. Appl. Soft Comput. J. 76, 400–415 (2019)
Wu, Z.B., Xu, J.P.: Managing consistency and consensus in group decision making with hesitant fuzzy linguistic preference relations. Omega 65, 28–40 (2016)
Zhang, Z., Li, Z., Gao, Y.: Consensus reaching for group decision making with multi-granular unbalanced linguistic information: a bounded confidence and minimum adjustment-based approach. Inf. fusion. 74, 96–110 (2021)
You, X., Hou, F.: A self-confidence and leadership based feedback mechanism for consensus of group decision making with probabilistic linguistic preference relation. Inf. Sci. 582, 547–572 (2022)
Ren, P.: Group decision making with hesitant fuzzy linguistic preference relations based on modified extent measurement. Expert Syst. Appl. 171, 114235 (2021)
Li, C., Dong, Y., Herrera, F.: A Consensus model for large-scale linguistic group decision making with a feedback recommendation based on clustered personalized individual semantics and opposing consensus groups. IEEE Trans. Fuzzy Syst. 27(2), 221–233 (2019)
Li, S., Wei, C.: Modeling the Social Influence in Consensus Reaching Process with Interval Fuzzy Preference Relations. Int. J. Fuzzy Syst. 21(6), 1755–1770 (2019)
Wan, S., Wang, F., Dong, J.: A group decision-making method considering both the group consensus and multiplicative consistency of interval-valued intuitionistic fuzzy preference relations. Inf. Sci. 466, 109–128 (2018)
Liu, H.B., Jiang, L.: Optimizing consistency and consensus improvement process for hesitant fuzzy linguistic preference relations and the application in group decision making. Inf. Fusion. 56, 114–127 (2020)
Liu, H.B., Ma, Y., Jiang, L.: Managing incomplete preferences and consistency improvement in hesitant fuzzy linguistic preference relations with applications in group decision making. Inf. Fusion. 51, 19–29 (2019)
Zhang, Z., Chen, S.M.: Group decision making with hesitant fuzzy linguistic preference relations. Inf. Sci. 514, 354–368 (2020)
Liu, P.S., Diao, H.Y., Zou, L., Deng, A.S.: Uncertain multi-attribute group decision making based on linguistic-valued intuitionistic fuzzy preference relations. Inf. Sci. 508, 293–308 (2020)
Chen, H.P., Xu, G.Q.: Group decision making with incomplete intuitionistic fuzzy preference relations based on additive consistency. Comput. Ind. Eng. 135, 560–567 (2019)
Tang, J., Meng, F.Y., Zhang, Y.L.: Decision making with interval-valued intuitionistic fuzzy preference relations based on additive consistency analysis. Inf. Sci. 467, 115–134 (2018)
Gong, Z.W., Tan, X., Yang, Y.J.: Optimal weighting models based on linear uncertain constraints in intuitionistic fuzzy preference relations. J. Oper. Res. Soc. 70(8), 1296–1307 (2019)
Wan, S.P., Wang, F., Dong, J.Y.: A three-phase method for group decision making with interval-valued intuitionistic fuzzy preference relations. IEEE Trans. Fuzzy Syst. 26(2), 998–1010 (2018)
Ghosh, S., Kumar Roy, S., Fugenschuh, A.: The multi-objective solid transportation problem with preservation technology using pythagorean fuzzy sets the multi-objective solid transportation problem. Int. J. Fuzzy Syst. (2022). https://doi.org/10.1007/s40815-021-01224-5
Wang, G., Tao, Y., Li, Y.: TOPSIS evaluation system of logistics transportation based on an ordered representation of the polygonal fuzzy set. Int. J. Fuzzy Syst. 22(3), 1565–1581 (2020)
He, S., Pan, X., Wang, Y.: A shadowed set-based TODIM method and its application to large-scale group decision making. Inf. Sci. 544, 135–154 (2021)
Acknowledgements
This research was supported by the Natural Science Fund of Heilongjiang Province (QC2015089) and Fundamental Research Funds for the Central Universities (3072021CFP0902).
Author information
Authors and Affiliations
Corresponding author
Appendices
Appendix A
Property 5
(the robust property)
Proof. (1) The sufficiency.□
Suppose the \(R_{s} = (d_{s_ ij} )_{n \times n}\) is additively consistent, and for each triple of (\(R_{s} = (d_{s_ ij} )_{n \times n}\)), let \(\delta (i) = k,\)\(\delta (k) = j\),\(\delta (j) = i\), then we have
Following property 4, if \(R_{s} = (d_{s_ ij} )_{n \times n}\) is additively consistent, we have \({(}\sum\nolimits_{l = 1}^{{\# h_{sij} }} {\lambda_{ij}^{l} } p_{\alpha ij}^{l} s_{\alpha ij}^{l} ,\sum\nolimits_{{l^{\prime} { = 1}}}^{{\# g_{sij} }} {\lambda_{ij}^{{l^{\prime} }} p_{\beta ij}^{{l^{\prime} }} s_{\beta ij}^{{l^{\prime} }} } ) \oplus (\sum\nolimits_{l = 1}^{{\# h_{sij} }} {(1 - \lambda_{ij}^{l} )} \sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{sij} }} {\xi_{ji}^{{l^{\prime} }} p_{\alpha ij}^{l} s_{2\tau } s_{\alpha ji}^{{l^{\prime} }} } ,\sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{sij} }} {(1 - \lambda_{ij}^{{l^{\prime} }} )} \sum\nolimits_{l = 1}^{{\# h_{sij} }} {\xi_{ji}^{l} p_{\beta ij}^{{l^{\prime} }} s_{2\tau } s_{\beta ji}^{l} } )) \oplus (s_{\tau } ,s_{\tau } )=\)\({(}\sum\nolimits_{l = 1}^{{\# h_{sik} }} {\lambda_{ik}^{l} } p_{\alpha ik}^{l} s_{\alpha ik}^{l} ,\)\(\sum\nolimits_{{l^{\prime} { = 1}}}^{{\# g_{sik} }} {\lambda_{ik}^{{l^{\prime} }} p_{\beta ik}^{{l^{\prime} }} s_{\beta ik}^{{l^{\prime} }} } )\)\(\oplus (\sum\nolimits_{l = 1}^{{\# h_{sik} }} {(1 - \lambda_{ik}^{l} )} \sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{sik} }} {\xi_{ki}^{{l^{\prime} }} p_{\alpha ik}^{l} s_{2\tau } s_{\alpha ki}^{{l^{\prime} }} } ,\sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{sik} }} {(1 - \lambda_{ik}^{{l^{\prime} }} )} \sum\nolimits_{l = 1}^{{\# h_{sik} }} {\xi_{ki}^{l} p_{\beta ik}^{{l^{\prime} }} s_{2\tau } s_{\beta ki}^{l} } )) \oplus\)\({(}\sum\nolimits_{l = 1}^{{\# h_{skj} }} {\lambda_{kj}^{l} } p_{\alpha kj}^{l} s_{\alpha kj}^{l} ,\sum\nolimits_{{l^{\prime} { = 1}}}^{{\# g_{skj} }} {\lambda_{kj}^{{l^{\prime} }} p_{\beta kj}^{{l^{\prime} }} s_{\beta kj}^{{l^{\prime} }} } ) \oplus (\sum\nolimits_{l = 1}^{{\# h_{skj} }} {(1 - \lambda_{kj}^{l} )} \sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{skj} }} {\xi_{jk}^{{l^{\prime} }} p_{\alpha kj}^{l} s_{2\tau } s_{\alpha jk}^{{l^{\prime} }} } ,\)\(\sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{skj} }} {(1 - \lambda_{kj}^{{l^{\prime} }} )} \sum\nolimits_{l = 1}^{{\# h_{skj} }} {\xi_{jk}^{l} p_{\beta kj}^{{l^{\prime} }} s_{2\tau } s_{\beta jk}^{l} } ))\), namely, \(\begin{aligned} \left\{ \begin{aligned} \sum\nolimits_{l = 1}^{{\# h_{sij} }} {\lambda_{ij}^{l} } p_{\alpha ij}^{l} s_{\alpha ij}^{l} \oplus \sum\nolimits_{l = 1}^{{\# h_{sij} }} {(1 - \lambda_{ij}^{l} )} \sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{sij} }} {\xi_{ji}^{{l^{\prime} }} p_{\alpha ij}^{l} s_{2\tau } s_{\alpha ji}^{{l^{\prime} }} } \oplus s_{\tau } { = (}\sum\nolimits_{l = 1}^{{\# h_{sik} }} {\lambda_{ik}^{l} } p_{\alpha ik}^{l} s_{\alpha ik}^{l} \oplus \sum\nolimits_{l = 1}^{{\# h_{sik} }} {(1 - \lambda_{ik}^{l} )} \sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{sik} }} {\xi_{ki}^{{l^{\prime} }} p_{\alpha ik}^{l} s_{2\tau } s_{\alpha ki}^{{l^{\prime} }} } ) \oplus (\sum\nolimits_{l = 1}^{{\# h_{skj} }} {\lambda_{kj}^{l} } p_{\alpha kj}^{l} s_{\alpha kj}^{l} \oplus \sum\nolimits_{l = 1}^{{\# h_{skj} }} {(1 - \lambda_{kj}^{l} )} \sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{skj} }} {\xi_{jk}^{{l^{\prime} }} p_{\alpha kj}^{l} s_{2\tau } s_{\alpha jk}^{{l^{\prime} }} } ) \hfill \\ \sum\nolimits_{{l^{\prime} { = 1}}}^{{\# g_{sij} }} {\lambda_{ij}^{{l^{\prime} }} p_{\beta ij}^{{l^{\prime} }} s_{\beta ij}^{{l^{\prime} }} } \oplus \sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{sij} }} {(1 - \lambda_{ij}^{{l^{\prime} }} )} \sum\nolimits_{l = 1}^{{\# h_{sij} }} {\xi_{ji}^{l} p_{\beta ij}^{{l^{\prime} }} s_{2\tau } s_{\beta ji}^{l} } \oplus s_{\tau } = (\sum\nolimits_{{l^{\prime} { = 1}}}^{{\# g_{sik} }} {\lambda_{ik}^{{l^{\prime} }} p_{\beta ik}^{{l^{\prime} }} s_{\beta ik}^{{l^{\prime} }} \oplus \sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{sik} }} {(1 - \lambda_{ik}^{{l^{\prime} }} )} \sum\nolimits_{l = 1}^{{\# h_{sik} }} {\xi_{ki}^{l} p_{\beta ik}^{{l^{\prime} }} s_{2\tau } s_{\beta ki}^{l} } ) \oplus (\sum\nolimits_{{l^{\prime} { = 1}}}^{{\# g_{skj} }} {\lambda_{kj}^{{l^{\prime} }} p_{\beta kj}^{{l^{\prime} }} s_{\beta kj}^{{l^{\prime} }} } \oplus \sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{skj} }} {(1 - \lambda_{kj}^{{l^{\prime} }} )} \sum\nolimits_{l = 1}^{{\# h_{skj} }} {\xi_{jk}^{l} p_{\beta kj}^{{l^{\prime} }} s_{2\tau } s_{\beta jk}^{l} } )} \hfill \\ \end{aligned} \right. \hfill \\ \hfill \\ \end{aligned}\)
Since, \(\begin{aligned} \sum\nolimits_{{l = 1}}^{{\# h_{{sij}} }} {\lambda _{{ij}}^{l} } p_{{\alpha ij}}^{l} s_{{\alpha ij}}^{l} \oplus \sum\nolimits_{{l = 1}}^{{\# h_{{sij}} }} {(1 - \lambda _{{ij}}^{l} )} \sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{{sij}} }} {\xi _{{ji}}^{{l^{\prime} }} p_{{\alpha ij}}^{l} s_{{2\tau }} s_{{\alpha ji}}^{{l^{\prime} }} } \oplus s_{\tau } = (\sum\nolimits_{{l = 1}}^{{\# h_{{sik}} }} {\lambda _{{ik}}^{l} } p_{{\alpha ik}}^{l} s_{{\alpha ik}}^{l} \oplus \sum\nolimits_{{l = 1}}^{{\# h_{{sik}} }} {(1 - \lambda _{{ik}}^{l} )} \sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{{sik}} }} {\xi _{{ki}}^{{l^{\prime} }} p_{{\alpha ik}}^{l} s_{{2\tau }} s_{{\alpha ki}}^{{l^{\prime} }} } ) \oplus (\sum\nolimits_{{l = 1}}^{{\# h_{{skj}} }} {\lambda _{{kj}}^{l} } p_{{\alpha kj}}^{l} s_{{\alpha kj}}^{l} \oplus \sum\nolimits_{{l = 1}}^{{\# h_{{skj}} }} {(1 - \lambda _{{kj}}^{l} )} \sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{{skj}} }} {\xi _{{jk}}^{{l^{\prime} }} p_{{\alpha kj}}^{l} s_{{2\tau }} s_{{\alpha jk}}^{{l^{\prime} }} } ) \hfill \\ \Rightarrow \sum\nolimits_{{l = 1}}^{{\# h_{{sik}} }} {(((} \lambda _{{ik}}^{l} - 1)\sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{{sik}} }} {\xi _{{ki}}^{{l^{\prime} }} p_{{\alpha ik}}^{l} s_{{2\tau }} s_{{\alpha ki}}^{{l^{\prime} }} ) - \lambda _{{ik}}^{l} p_{{\alpha ik}}^{l} s_{{\alpha ik}}^{l} )} \oplus s_{\tau } = \sum\nolimits_{{l = 1}}^{{\# h_{{sij}} }} {(((\lambda _{{ij}}^{l} - 1)\sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{{sij}} }} {\xi _{{ji}}^{{l^{\prime} }} p_{{\alpha ij}}^{l} s_{{2\tau }} s_{{\alpha ji}}^{{l^{\prime} }} )} } - \lambda _{{ij}}^{l} p_{{\alpha ij}}^{l} s_{{\alpha ij}}^{l} ) \oplus (\sum\nolimits_{{l = 1}}^{{\# h_{{skj}} }} {\lambda _{{kj}}^{l} } p_{{\alpha kj}}^{l} s_{{\alpha kj}}^{l} \oplus \sum\nolimits_{{l = 1}}^{{\# h_{{skj}} }} {(1 - \lambda _{{kj}}^{l} )} \sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{{skj}} }} {\xi _{{jk}}^{{l^{\prime} }} p_{{\alpha kj}}^{l} s_{{2\tau }} s_{{\alpha jk}}^{{l^{\prime} }} } ) \hfill \\ \Rightarrow \sum\nolimits_{{l = 1}}^{{\# h_{{sik}} }} {(((} \lambda _{{ik}}^{l} - 1)\sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{{sik}} }} {\xi _{{ki}}^{{l^{\prime} }} p_{{\alpha ik}}^{l} (s_{{2\tau }} - s_{{\alpha ki}}^{{l^{\prime} }} )) - \lambda _{{ik}}^{l} p_{{\alpha ik}}^{l} s_{{\alpha ik}}^{l} )} \oplus s_{\tau } = \sum\nolimits_{{l = 1}}^{{\# h_{{sij}} }} {(((\lambda _{{ij}}^{l} - 1)\sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{{sij}} }} {\xi _{{ji}}^{{l^{\prime} }} p_{{\alpha ij}}^{l} (s_{{2\tau }} - s_{{\alpha ji}}^{{l^{\prime} }} } } )) - \lambda _{{ij}}^{l} p_{{\alpha ij}}^{l} s_{{\alpha ij}}^{l} ) \oplus (\sum\nolimits_{{l = 1}}^{{\# h_{{skj}} }} {\lambda _{{kj}}^{l} } p_{{\alpha kj}}^{l} s_{{\alpha kj}}^{l} \oplus \sum\nolimits_{{l = 1}}^{{\# h_{{skj}} }} {(1 - \lambda _{{kj}}^{l} )} \sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{{skj}} }} {\xi _{{jk}}^{{l^{\prime} }} p_{{\alpha kj}}^{l} s_{{2\tau }} s_{{\alpha jk}}^{{l^{\prime} }} } ) \hfill \\ \Rightarrow \sum\nolimits_{{l = 1}}^{{\# h_{{sik}} }} {(((} \lambda _{{ik}}^{l} - 1)\sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{{sik}} }} {\xi _{{ki}}^{{l^{\prime} }} p_{{\alpha ik}}^{l} s_{{2\tau }} ) - ((\lambda _{{ik}}^{l} - 1)\sum\nolimits_{{l^{\prime} }}^{{\# g_{{sik}} }} {\xi _{{ki}}^{{l^{\prime} }} p_{{\alpha ik}}^{l} s_{{\alpha ki}}^{{l^{\prime} }} )} - \lambda _{{ik}}^{l} p_{{\alpha ik}}^{l} s_{{\alpha ik}}^{l} )} \oplus s_{\tau } = \sum\nolimits_{{l = 1}}^{{\# h_{{sij}} }} {(((\lambda _{{ij}}^{l} - 1)\sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{{sij}} }} {\xi _{{ji}}^{{l^{\prime} }} p_{{\alpha ij}}^{l} s_{{2\tau }} } } ) - ((\lambda _{{ij}}^{l} - 1)\sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{{sij}} }} {\xi _{{ji}}^{{l^{\prime} }} p_{{\alpha ij}}^{l} s_{{\alpha ji}}^{{l^{\prime} }} )} - \lambda _{{ij}}^{l} p_{{\alpha ij}}^{l} s_{{\alpha ij}}^{l} ) \oplus (\sum\nolimits_{{l = 1}}^{{\# h_{{skj}} }} {\lambda _{{kj}}^{l} } p_{{\alpha kj}}^{l} s_{{\alpha kj}}^{l} \oplus \sum\nolimits_{{l = 1}}^{{\# h_{{skj}} }} {(1 - \lambda _{{kj}}^{l} )} \sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{{skj}} }} {\xi _{{jk}}^{{l^{\prime} }} p_{{\alpha kj}}^{l} s_{{2\tau }} s_{{\alpha jk}}^{{l^{\prime} }} } ) \hfill \\ \Rightarrow \sum\nolimits_{{l = 1}}^{{\# h_{{sik}} }} {(((1 - \lambda _{{ik}}^{l} )\sum\nolimits_{{l^{\prime} }}^{{\# g_{{sik}} }} {\xi _{{ki}}^{{l^{\prime} }} p_{{\alpha ik}}^{l} s_{{\alpha ki}}^{{l^{\prime} }} ) \oplus } (} \lambda _{{ik}}^{l} ((\sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{{sik}} }} {\xi _{{ki}}^{{l^{\prime} }} p_{{\alpha ik}}^{l} s_{{2\tau }} ) - p_{{\alpha ik}}^{l} s_{{\alpha ik}}^{l} ))} - \sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{{sik}} }} {\xi _{{ki}}^{{l^{\prime} }} p_{{\alpha ik}}^{l} s_{{2\tau }} )} \oplus s_{\tau } = \sum\nolimits_{{l = 1}}^{{\# h_{{sij}} }} {(((1 - \lambda _{{ij}}^{l} )\sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{{sij}} }} {\xi _{{ji}}^{{l^{\prime} }} p_{{\alpha ij}}^{l} s_{{\alpha ji}}^{{l^{\prime} }} ) \oplus } \lambda _{{ij}}^{l} ((\sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{{sij}} }} {\xi _{{ji}}^{{l^{\prime} }} p_{{\alpha ij}}^{l} s_{{2\tau }} ) - p_{{\alpha ij}}^{l} s_{{\alpha ij}}^{l} } } )) - \sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{{sij}} }} {\xi _{{ji}}^{{l^{\prime} }} p_{{\alpha ij}}^{l} s_{{2\tau }} } ) \oplus (\sum\nolimits_{{l = 1}}^{{\# h_{{skj}} }} {\lambda _{{kj}}^{l} } p_{{\alpha kj}}^{l} s_{{\alpha kj}}^{l} \oplus \sum\nolimits_{{l = 1}}^{{\# h_{{skj}} }} {(1 - \lambda _{{kj}}^{l} )} \sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{{skj}} }} {\xi _{{jk}}^{{l^{\prime} }} p_{{\alpha kj}}^{l} s_{{2\tau }} s_{{\alpha jk}}^{{l^{\prime} }} } ) \hfill \\ \Rightarrow \sum\nolimits_{{l = 1}}^{{\# h_{{sik}} }} {(((1 - \lambda _{{ik}}^{l} )\sum\nolimits_{{l^{\prime} }}^{{\# g_{{sik}} }} {\xi _{{ki}}^{{l^{\prime} }} p_{{\alpha ik}}^{l} s_{{\alpha ki}}^{{l^{\prime} }} ) \oplus } (} \lambda _{{ik}}^{l} ((\sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{{sik}} }} {\xi _{{ki}}^{{l^{\prime} }} p_{{\alpha ik}}^{l} s_{{2\tau }} ) - p_{{\alpha ik}}^{l} s_{{\alpha ik}}^{l} ))} - s_{{2\tau }} \oplus s_{\tau } = \sum\nolimits_{{l = 1}}^{{\# h_{{sij}} }} {(1 - \lambda _{{ij}}^{l} )\sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{{sij}} }} {\xi _{{ji}}^{{l^{\prime} }} p_{{\alpha ij}}^{l} s_{{\alpha ji}}^{{l^{\prime} }} \oplus } \lambda _{{ij}}^{l} ((\sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{{sij}} }} {\xi _{{ji}}^{{l^{\prime} }} p_{{\alpha ij}}^{l} s_{{2\tau }} ) - p_{{\alpha ij}}^{l} s_{{\alpha ij}}^{l} } } )) - s_{{2\tau }} \oplus (\sum\nolimits_{{l = 1}}^{{\# h_{{skj}} }} {\lambda _{{kj}}^{l} } p_{{\alpha kj}}^{l} s_{{\alpha kj}}^{l} \oplus \sum\nolimits_{{l = 1}}^{{\# h_{{skj}} }} {(1 - \lambda _{{kj}}^{l} )} \sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{{skj}} }} {\xi _{{jk}}^{{l^{\prime} }} p_{{\alpha kj}}^{l} s_{{2\tau }} s_{{\alpha jk}}^{{l^{\prime} }} } ) \hfill \\ \Rightarrow (\sum\nolimits_{{l = 1}}^{{\# h_{{sik}} }} {(1 - \lambda _{{ik}}^{l} )\sum\nolimits_{{l^{\prime} }}^{{\# g_{{sik}} }} {\xi _{{ki}}^{{l^{\prime} }} p_{{\alpha ik}}^{l} s_{{\alpha ki}}^{{l^{\prime} }} ) \oplus } \sum\nolimits_{{l = 1}}^{{\# h_{{sik}} }} {\lambda _{{ik}}^{l} p_{{\alpha ik}}^{l} (s_{{2\tau }} - s_{{\alpha ik}}^{l} )) \oplus s_{\tau } = } } (\sum\nolimits_{{l = 1}}^{{\# h_{{sij}} }} {(1 - \lambda _{{ij}}^{l} )\sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{{sij}} }} {\xi _{{ji}}^{{l^{\prime} }} p_{{\alpha ij}}^{l} s_{{\alpha ji}}^{{l^{\prime} }} \oplus } } \sum\nolimits_{{l^{\prime} }}^{{\# g_{{sij}} }} {\lambda _{{ij}}^{l} p_{{\alpha ij}}^{l} (s_{{2\tau }} - s_{{\alpha ij}}^{l} )) \oplus (\sum\nolimits_{{l = 1}}^{{\# h_{{skj}} }} {\lambda _{{kj}}^{l} } p_{{\alpha kj}}^{l} s_{{\alpha kj}}^{l} \oplus \sum\nolimits_{{l = 1}}^{{\# h_{{skj}} }} {(1 - \lambda _{{kj}}^{l} )} \sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{{skj}} }} {\xi _{{jk}}^{{l^{\prime} }} p_{{\alpha kj}}^{l} s_{{2\tau }} s_{{\alpha jk}}^{{l^{\prime} }} } } ) \hfill \\ \Rightarrow (\sum\nolimits_{{l = 1}}^{{\# h_{{sik}} }} {(1 - \lambda _{{ik}}^{l} )\sum\nolimits_{{l^{\prime} }}^{{\# g_{{sik}} }} {\xi _{{ki}}^{{l^{\prime} }} p_{{\alpha ik}}^{l} s_{{\alpha ki}}^{{l^{\prime} }} ) \oplus } \sum\nolimits_{{l = 1}}^{{\# h_{{sik}} }} {\lambda _{{ik}}^{l} p_{{\alpha ik}}^{l} s_{{2\tau }} s_{{\alpha ik}}^{l} ) \oplus s_{\tau } = } } (\sum\nolimits_{{l = 1}}^{{\# h_{{sij}} }} {(1 - \lambda _{{ij}}^{l} )\sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{{sij}} }} {\xi _{{ji}}^{{l^{\prime} }} p_{{\alpha ij}}^{l} s_{{\alpha ji}}^{{l^{\prime} }} \oplus } } \sum\nolimits_{{l^{\prime} }}^{{\# g_{{sij}} }} {\lambda _{{ij}}^{l} p_{{\alpha ij}}^{l} s_{{2\tau }} s_{{\alpha ij}}^{l} ) \oplus (\sum\nolimits_{{l = 1}}^{{\# h_{{skj}} }} {\lambda _{{kj}}^{l} } p_{{\alpha kj}}^{l} s_{{\alpha kj}}^{l} \oplus \sum\nolimits_{{l = 1}}^{{\# h_{{skj}} }} {(1 - \lambda _{{kj}}^{l} )} \sum\nolimits_{{l^{\prime} = 1}}^{{\# g_{{skj}} }} {\xi _{{jk}}^{{l^{\prime} }} p_{{\alpha kj}}^{l} s_{{2\tau }} s_{{\alpha jk}}^{{l^{\prime} }} } } ) \hfill \\ \end{aligned}\) Thus, we have
\(\left\{ \begin{aligned} \sum\limits_{l = 1}^{{\# h_{sik} }} {(1 - \lambda_{ik}^{l} )\sum\limits_{{l^{\prime} }}^{{\# g_{sik} }} {\xi_{ki}^{{l^{\prime} }} p_{\alpha ik}^{l} s_{\alpha ki}^{{l^{\prime} }} \oplus } \sum\limits_{l = 1}^{{\# h_{sik} }} {\lambda_{ik}^{l} p_{\alpha ik}^{l} s_{2\tau } s_{\alpha ik}^{l} \oplus \tau } } = (\sum\limits_{l = 1}^{{\# h_{sij} }} {(1 - \lambda_{ij}^{l} )\sum\limits_{{l^{\prime} = 1}}^{{\# g_{sij} }} {\xi_{ji}^{{l^{\prime} }} p_{\alpha ij}^{l} s_{\alpha ji}^{{l^{\prime} }} \oplus } } \sum\limits_{{l^{\prime} }}^{{\# g_{sij} }} {\lambda_{ij}^{l} p_{\alpha ij}^{l} s_{2\tau } s_{\alpha ij}^{l} ) \oplus (\sum\limits_{l = 1}^{{\# h_{skj} }} {\lambda_{kj}^{l} } p_{\alpha kj}^{l} s_{\alpha kj}^{l} \oplus \sum\limits_{l = 1}^{{\# h_{skj} }} {(1 - \lambda_{kj}^{l} )} \sum\limits_{{l^{\prime} = 1}}^{{\# g_{skj} }} {\xi_{jk}^{{l^{\prime} }} p_{\alpha kj}^{l} s_{2\tau } s_{\alpha jk}^{{l^{\prime} }} } )} \hfill \\ \sum\limits_{{l^{\prime} = 1}}^{{\# g_{sik} }} {(1 - \lambda_{ik}^{{l^{\prime} }} )} \sum\limits_{l = 1}^{{\# h_{sik} }} {\xi_{ki}^{l} p_{\beta ik}^{{l^{\prime} }} s_{\beta ki}^{l} \oplus } \sum\limits_{{l^{\prime} = 1}}^{{\# g_{sik} }} {\lambda_{ik}^{{l^{\prime} }} } p_{\beta ik}^{{l^{\prime} }} s_{2\tau } s_{\beta ik}^{l} \oplus \tau = (\sum\limits_{{l^{\prime} = 1}}^{{\# g_{sij} }} {(1 - \lambda_{ij}^{{l^{\prime} }} )} \sum\limits_{l = 1}^{{\# h_{sij} }} {\xi_{ji}^{l} p_{\beta ij}^{{l^{\prime} }} s_{2\tau } s_{\beta ji}^{l} } \oplus \sum\limits_{{l^{\prime} { = 1}}}^{{\# g_{sij} }} {\lambda_{ij}^{{l^{\prime} }} p_{\beta ij}^{{l^{\prime} }} s_{2\tau } s_{\beta ij}^{{l^{\prime} }} ) \oplus (\sum\limits_{{l^{\prime} { = 1}}}^{{\# g_{skj} }} {\lambda_{kj}^{{l^{\prime} }} p_{\beta kj}^{{l^{\prime} }} s_{\beta kj}^{{l^{\prime} }} } \oplus \sum\limits_{{l^{\prime} = 1}}^{{\# g_{skj} }} {(1 - \lambda_{kj}^{{l^{\prime} }} )} \sum\limits_{l = 1}^{{\# h_{skj} }} {\xi_{jk}^{l} p_{\beta kj}^{{l^{\prime} }} s_{2\tau } s_{\beta jk}^{l} } )} \hfill \\ \end{aligned} \right.\), Namely, \(\left\{ \begin{aligned} \sum\limits_{l = 1}^{{\# h_{sik} }} {\lambda_{ki}^{l} \sum\limits_{{l^{\prime} }}^{{\# g_{sik} }} {\xi_{ki}^{{l^{\prime} }} p_{\alpha ik}^{l} s_{\alpha ki}^{{l^{\prime} }} \oplus } \sum\limits_{l = 1}^{{\# h_{sik} }} {(1 - \lambda_{ki}^{l} )p_{\alpha ik}^{l} s_{2\tau } s_{\alpha ik}^{l} \oplus \tau } } = (\sum\limits_{l = 1}^{{\# h_{sij} }} {\lambda_{ji}^{l} \sum\limits_{{l^{\prime} = 1}}^{{\# g_{sij} }} {\xi_{ji}^{{l^{\prime} }} p_{\alpha ij}^{l} s_{\alpha ji}^{{l^{\prime} }} \oplus } } \sum\limits_{{l^{\prime} }}^{{\# g_{sij} }} {(1 - \lambda_{ji}^{l} )p_{\alpha ij}^{l} s_{2\tau } s_{\alpha ij}^{l} ) \oplus (\sum\limits_{l = 1}^{{\# h_{skj} }} {\lambda_{kj}^{l} } p_{\alpha kj}^{l} s_{\alpha kj}^{l} \oplus \sum\limits_{l = 1}^{{\# h_{skj} }} {(1 - \lambda_{kj}^{l} )} \sum\limits_{{l^{\prime} = 1}}^{{\# g_{skj} }} {\xi_{jk}^{{l^{\prime} }} p_{\alpha kj}^{l} s_{2\tau } s_{\alpha jk}^{{l^{\prime} }} } )} \hfill \\ \sum\limits_{{l^{\prime} = 1}}^{{\# g_{sik} }} {\lambda_{ki}^{{l^{\prime} }} } \sum\limits_{l = 1}^{{\# h_{sik} }} {\xi_{ki}^{l} p_{\beta ik}^{{l^{\prime} }} s_{\beta ki}^{l} \oplus } \sum\limits_{{l^{\prime} = 1}}^{{\# g_{sik} }} {(1 - \lambda_{ki}^{{l^{\prime} }} } )p_{\beta ik}^{{l^{\prime} }} s_{2\tau } s_{\beta ik}^{l} \oplus \tau = (\sum\limits_{{l^{\prime} = 1}}^{{\# g_{sij} }} {\lambda_{ji}^{{l^{\prime} }} } \sum\limits_{l = 1}^{{\# h_{sij} }} {\xi_{ji}^{l} p_{\beta ij}^{{l^{\prime} }} s_{2\tau } s_{\beta ji}^{l} } \oplus \sum\limits_{{l^{\prime} { = 1}}}^{{\# g_{sij} }} {(1 - \lambda_{ji}^{l} )p_{\beta ij}^{{l^{\prime} }} s_{2\tau } s_{\beta ij}^{{l^{\prime} }} ) \oplus (\sum\limits_{{l^{\prime} { = 1}}}^{{\# g_{skj} }} {\lambda_{kj}^{{l^{\prime} }} p_{\beta kj}^{{l^{\prime} }} s_{\beta kj}^{{l^{\prime} }} } \oplus \sum\limits_{{l^{\prime} = 1}}^{{\# g_{skj} }} {(1 - \lambda_{kj}^{{l^{\prime} }} )} \sum\limits_{l = 1}^{{\# h_{skj} }} {\xi_{jk}^{l} p_{\beta kj}^{{l^{\prime} }} s_{2\tau } s_{\beta jk}^{l} } )} \hfill \\ \end{aligned} \right.\) In which,\(\lambda_{ki}^{l} ,\lambda_{ki}^{{l^{\prime} }} ,\lambda_{ji}^{l} ,\lambda_{ji}^{{l^{\prime} }}\) be the 0–1 indicator variable with \(\lambda_{ij}^{l} + \lambda_{ji}^{l} = 1,\lambda_{ik}^{{l^{\prime} }} + \lambda_{ki}^{{l^{\prime} }} = 1\).
Then, we can further obtain
\(E(d_{ski} ) \oplus (\tau ,\tau ) = E(d_{skj} ) \oplus E(d_{s\delta ji} )\).
Thus, we have \(E(d_{s\delta (i)\delta (j)} ) \oplus (s_{\tau } ,s_{\tau } ) = E(d_{s\delta (i)\delta (k)} ) \oplus E(d_{s\delta (k)\delta (j)} )\) held.
(2) The necessity.
Similar to the above procedure, the necessity can be easily derived, the detailed proof process is omitted here.
Appendix B
Notation List
Notation List | |
---|---|
IFPRs | Intuitionistic fuzzy preference relations |
GDM | Group decision making |
LDHFPRs | Linguistic dual hesitant fuzzy preference relations |
DM | Decision makers |
FPRs | Fuzzy preference relations |
MPRs | Multiplicative preference relations |
LPRs | Linguistic preference relations |
AHP | Analytic hierarchy processes |
LIFVs LIFPRs LVIFPRs MLIFPRs PLDHFPRs RCLIFPRs RCLIFV IFSs LDHFS LDHFV ELDHFV PLDHFV RCLDHFV PCLDHFPRs CRP | Linguistic intuitionistic fuzzy variables Linguistic intuitionistic fuzzy preference relations Linguistic-valued intuitionistic fuzzy preference relations Multiplicative linguistic intuitionistic fuzzy preference relations Probability linguistic dual hesitant fuzzy preference relations Reverse complementary linguistic intuitionistic fuzzy preference relations Reverse complementary linguistic intuitionistic fuzzy variables Intuitionistic fuzzy sets Linguistic dual hesitant fuzzy set Linguistic dual hesitant fuzzy value Equivalent linguistic dual hesitant fuzzy value Possibility linguistic dual hesitant fuzzy value Reverse complementary linguistic dual hesitant fuzzy value Reverse complementary linguistic dual hesitant fuzzy preference relations Consensus reaching process |
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Tao, Y., Peng, Y. & Wu, Y. Linguistic Dual Hesitant Fuzzy Preference Relations and Their Application in Group Decision-Making. Int. J. Fuzzy Syst. 25, 1105–1130 (2023). https://doi.org/10.1007/s40815-022-01427-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40815-022-01427-4