Skip to main content
Log in

A Modified Fuzzy Inference Rule-Based Model for 3D Speckle Tracking

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Echocardiographic strain imaging is used to quantify cardiac deformation noninvasively through various techniques including non-rigid image registration. However, non-rigid image registration should be strong enough to deal with the poor spatiotemporal resolution of echocardiographic images. Extracting relevant features and calculating a suitable geometric transformation for the relevant features are the main parts of a registration problem. This paper aims to introduce a suitable geometric transformation for quantifying cardiac deformation based on a modified fuzzy inference system (FIS). The proposed method extracts relevant features of two echocardiographic images to generate proper rules for registration of two echocardiographic images. The modified FIS comprises two FISs in a series structure. We evaluated the performance of the proposed method for echocardiographic motion estimation with both in silico and in vivo databases. Applying the proposed method to the well-known STRAUS database resulted in 0.68 mm tracking error and 0.5 ± 3.78 relative circumferential strain error, which indicate the competitiveness of the proposed method with the state-of-the-art algorithms. In addition, the obtained results from in vivo database, CETUS, expressed the potential of the suggested algorithm for clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

STRAUS database link: https://team.inria.fr/epione/en/data/straus/. CETUS database link: https://www.creatis.insa-lyon.fr/EvaluationPlatform/CETUS/

Notes

  1. https://team.inria.fr/epione/en/data/straus/.

  2. SIFT- Modefied Feature-based Fuzzy Registration.

References

  1. Crosby, J., Amundsen, B.H., Hergum, T., Remme, E.W., Langeland, S., Torp, H.: 3-D speckle tracking for assessment of regional left ventricular function. Ultrasound Med. Biol. 35(3), 458–471 (2009). https://doi.org/10.1016/j.ultrasmedbio.2008.09.011

    Article  Google Scholar 

  2. Alessandrini, M., et al.: Detailed evaluation of five 3D speckle tracking algorithms using synthetic echocardiographic recordings. IEEE Trans. Med. Imaging 35(8), 1915–1926 (2016). https://doi.org/10.1109/TMI.2016.2537848

    Article  Google Scholar 

  3. Chen, X., et al.: 3-D correlation-based speckle tracking. Ultrason. Imaging 27(1), 21–36 (2005). https://doi.org/10.1177/016173460502700102

    Article  Google Scholar 

  4. Somphone, O., et al.: Fast myocardial motion and strain estimation in 3D cardiac ultrasound with Sparse Demons. Proc. Intl. Symp. Biomed. Imaging 1, 1182–1185 (2013). https://doi.org/10.1109/ISBI.2013.6556691

    Article  Google Scholar 

  5. Heyde, B., Alessandrini, M., Hermans, J., Barbosa, D., Claus, P., Dhooge, J.: Anatomical image registration using volume conservation to assess cardiac deformation from 3D ultrasound recordings. IEEE Trans. Med. Imaging 35(2), 501–511 (2016). https://doi.org/10.1109/TMI.2015.2479556

    Article  Google Scholar 

  6. Yu, X., Wang, H., Ma, L.: Ultrasound speckle tracking with deep convolutional neural network. J. Med. Imaging Health Informatics 10(3), 743–749 (2020). https://doi.org/10.1166/jmihi.2020.2927

    Article  Google Scholar 

  7. Hsu, W.Y.: Automatic left ventricle recognition, segmentation and tracking in cardiac ultrasound image sequences, IEEE. Access 7, 140524–140533 (2019). https://doi.org/10.1109/ACCESS.2019.2920957

    Article  Google Scholar 

  8. Shreevastava, S., Tiwari, A.K., Som, T.: Intuitionistic fuzzy neighborhood rough set model for feature selection. Int. J. Fuzzy Syst 7(2), 75–84 (2018). https://doi.org/10.4018/IJFSA.2018040104

    Article  Google Scholar 

  9. Vijayakumar, S., Santhi, V.: Speckle noise reduction in SAR images using fuzzy inference system. Int. J. Fuzzy Syst. 8(4), 60–83 (2019). https://doi.org/10.4018/IJFSA.2019100104

    Article  Google Scholar 

  10. Chinta, S.S.: Kernelised rough sets based clustering algorithms fused with firefly algorithm for image segmentation. Int. J. Fuzzy Syst 8(4), 25–38 (2019). https://doi.org/10.4018/IJFSA.2019100102

    Article  Google Scholar 

  11. Chung, F.L., Deng, Z., Wang, S.: An adaptive fuzzy-inference-rule-based flexible model for automatic elastic image registration. IEEE Trans. Fuzzy Syst. 17(5), 995–1010 (2009). https://doi.org/10.1109/TFUZZ.2009.2020154

    Article  Google Scholar 

  12. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man. Cybern. 1, 116–132 (1985). https://doi.org/10.1109/TSMC.1985.6313399

    Article  MATH  Google Scholar 

  13. Männle, M.: Identifying rule-based TSK fuzzy models, Proc. Eur. Congr. Intell. Tech. Soft Comput. (EUFIT 1999), Aachen, Ger. Elit. Found., pp. 286–299, 1999.

  14. Vafamand, N., Arefi, M.M., Khayatian, A.: Nonlinear system identification based on Takagi-Sugeno fuzzy modeling and unscented Kalman filter. ISA Trans. 74, 34–143 (2018). https://doi.org/10.1016/j.isatra.2018.02.005

    Article  Google Scholar 

  15. Rahimi, M., Davoodi, R., Moradi, M.H.: Deep fuzzy model for non-linear effective connectivity estimation in the intuition of consciousness correlates. Biomed. Signal Process. Control 57, 101732 (2020). https://doi.org/10.1016/j.bspc.2019.101732

    Article  Google Scholar 

  16. Davoodi, R., Moradi, M.H.: Mortality prediction in intensive care units (ICUs) using a deep rule-based fuzzy classifier. J. Biomed. Inform 79, 48–59 (2018). https://doi.org/10.1016/j.jbi.2018.02.008

    Article  Google Scholar 

  17. Hosseini, M.H., Moradi, M.H., Tabassian, M., D’hooge, J.: Non-rigid image registration using a modified fuzzy feature-based inference system for 3D cardiac motion estimation. Comput. Methods Programs Biomed. 205, 106085 (2021). https://doi.org/10.1016/j.cmpb.2021.106085

    Article  Google Scholar 

  18. Hosseini, M.S., Moradi, M.H.: Adaptive fuzzy-SIFT rule-based registration for 3D cardiac motion estimation. Appl. Intell. (2021). https://doi.org/10.1007/s10489-021-02430-2

    Article  Google Scholar 

  19. Rister, B., Horowitz, D.L., Rubin, D.L.: Volumetric image registration from invariant keypoints. IEEE Trans. Image Process. 26(10), 4900–4910 (2017). https://doi.org/10.1109/TIP.2017.2722689

    Article  MathSciNet  Google Scholar 

  20. De Craene, M., et al.: 3D strain assessment in ultrasound (Straus): a synthetic comparison of five tracking methodologies. IEEE Trans. Med. Imaging 32(9), 1632–1646 (2013). https://doi.org/10.1109/TMI.2013.2261823

    Article  Google Scholar 

  21. Bezdek, J.C., Ehrlich, R., Full, W.: FCM: The fuzzy c-means clustering algorithm. Comput. Geosci. 10(2–3), 191–203 (1984). https://doi.org/10.1016/0098-3004(84)90020-7

    Article  Google Scholar 

  22. Alessandrini, M., et al.: A pipeline for the generation of realistic 3d synthetic echocardiographic sequences: methodology and open-access database. IEEE Trans. Med. Imaging 34(7), 1436–1451 (2015). https://doi.org/10.1109/TMI.2015.2396632

    Article  Google Scholar 

  23. Bernard, O. et al.: Challenge on Endocardial Three-dimensional Ultrasound Segmentation (CETUS), in Proceedings MICCAI Challenge on Echocardiographic Three-Dimensional Ultrasound Segmentation (CETUS), pp. 1–8 (2014)

  24. Frisch, D.: point2trimesh - Distance between a point and a triangulated surface in 3D, https://www.mathworks.com/matlabcentral/fileexchange/52882-point2trimesh-distance-between-point-and-triangulated-surface (2021)

  25. Cerqueira, M.D., et al.: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. Circulation 105(4), 539–542 (2002). https://doi.org/10.1161/hc0402.102975

    Article  MathSciNet  Google Scholar 

  26. Yushkevich, P.A., et al.: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3), 1116–1128 (2006). https://doi.org/10.1016/j.neuroimage.2006.01.015

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to express their appreciations to Raheleh Davoodi for her kind advices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hassan Moradi.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, M.S., Moradi, M.H. A Modified Fuzzy Inference Rule-Based Model for 3D Speckle Tracking. Int. J. Fuzzy Syst. 25, 1131–1143 (2023). https://doi.org/10.1007/s40815-022-01428-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-022-01428-3

Keywords

Navigation