Abstract
Energy is an inseparable aspect of the twenty-first century; its utilization and availability have become highly relevant to the issues of climate change and growing demands. Welding is another vital manufacturing process that requires special attention due to its energy-intensive nature and environmental burdens. Thus, a study addressing energy consumption in welding processes without compromising product quality is the need of the hour. This study looks into the energy consumption of the seldom reported electron beam welding (EBW) process while welding a popular nickel-based superalloy (Inconel 825) without compromising quality by maintaining optimal weld strength of the weldments. Four EBW parameters viz., beam current (I), accelerating voltage (V), welding speed (S), and beam oscillation (O) are selected, and their influence on the net input energy (Enet) and ultimate tensile strength (UTS) is studied. The V is found as the dominant process parameter that has a direct influence on the Enet and UTS of the weldments. A Study on sensitivity analysis inferred that the value of UTS of the weldments is highly sensitive to the change in accelerating voltage sensitivity (0–300 MPa/kV). A weldment produced with an intermediate or higher Enet has determined to have the highest achievable UTS. Furthermore, a modified integrated optimization methodology combining fuzzy logic (FL) modeling with the meta-heuristic-based particle swarm optimization (PSO) algorithm is proposed to satisfy both objectives, i.e., minimize net input energy (Enet) consumption while achieving the desired ultimate tensile strength (UTS). The methodology yields a minimum Enet of 0.1243 kJ/mm, at parameter settings of V = 60 kV, I = 38 mA, S = 1100.4 mm/min, O = 200 Hz, achieving UTS of 701.8196 MPa. The validation at the optimal parameter setting yields UTS of 711.3214 MPa with a deviation of 1.354% and is observed to be highly consistent with a faster convergence rate in the consistency test suggesting the superiority and robustness of the FL-PSO algorithm.












Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data Availability
The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.
Abbreviations
- EBW:
-
Electron beam welding
- FL:
-
Fuzzy logic
- PSO:
-
Particle swarm optimization
- SMAW:
-
Shielded metal arc welding
- SMSs:
-
Sustainable manufacturing strategies
- PSI:
-
Process sustainability index
- FSW:
-
Friction stir welding
- LBW:
-
Laser beam welding
- GTAW:
-
Gas tungsten arc welding
- LCA:
-
Life cycle analysis
- PAW:
-
Plasma arc welding
- GMAW:
-
Gas metal arc welding
- NSO:
-
Neutrosophic optimization
- ABC:
-
Artificial bee colony
- ANFIS:
-
Adaptive neuro-fuzzy interface system
- ANN:
-
Artificial neural network
- TLBO:
-
Teaching learning-based optimization
- GA:
-
Genetic algorithm
- NSGA-II:
-
Non dominated sorting genetic algorithm
- DEMO:
-
Differential evolution for multi-objective
- ELM:
-
Extreme learning machine
- AHP:
-
Analytical hierarchy process
- RSM:
-
Response surface methodology
- MCDM:
-
Multi-criteria decision making
- GRA:
-
Grey relational analysis
- DoE:
-
Design of experiments
- CCD:
-
Central composite design
- EWDM:
-
Wire cut electro-discharge machining
- FIS:
-
Fuzzy inference system
- (ANOVA).:
-
Analysis of variance
- COG:
-
Centre of gravity
- LSA:
-
Local sensitivity analysis
- GSA:
-
Global sensitivity analysis
- APE:
-
Average percentage error
- PA:
-
Prediction accuracy
- MA:
-
Model accuracy
- I :
-
Beam current
- V :
-
Accelerating voltage
- S :
-
Welding speed
- O :
-
Beam oscillation
- E ne t :
-
Net input energy
- UTS :
-
Ultimate tensile strength
- P w :
-
Beam power
- Y :
-
Response characteristics
- ξ :
-
Error term
- ρ b :
-
Coefficients of linear terms
- ρ bb :
-
Coefficients of square terms
- ρ bc :
-
Coefficients of interaction terms
- R 2 :
-
Coefficient of determination
- R adj 2 :
-
Adjusted coefficient of determination
- p best :
-
Particles individual best solution
- g best :
-
Population's overall best solution
- d :
-
Number of process variables
- c 1 ,c 2 :
-
Learning factor
- r 1, r 2 :
-
Random numbers
- w :
-
Inertia weight
- v ij t :
-
Updated velocity of particles
- \({\widehat{UTS}}_{a}\).:
-
Achievable or actual (required)UTS
- UTS a * :
-
Highest permitted UTS
- ζ I :
-
Beam current sensitivity
- ζ S :
-
Welding speed sensitivity
- ζ V :
-
Accelerating voltage sensitivity
- ζ O :
-
Beam oscillation sensitivity
- \(\overline{Y }\) :
-
Model predicted value
References
Rogers, P.P., Jalal, K.F., Boyd, J.A.: An introduction to Sustainable Development. Glen Educational Foundation, Inc, New York (2008)
Lee, H.T., Song, J.H., Min, S.H., Lee, H.S., Song, K.Y., Chu, C.N., Ahn, S.H.: Research trends in sustainable manufacturing: a review and future perspective based on research databases. Int. J. Precis. Eng. Manuf.-Green Technol. 6(4), 809–819 (2019). https://doi.org/10.1007/s40684-019-00113-5
Yoon, H.S., Kim, M.S., Jang, K.H., Ahn, S.H.: Future perspectives of sustainable manufacturing and applications based on research databases. Int. J. Precis. Eng. Manuf. 17(9), 1249–1263 (2016). https://doi.org/10.1007/s12541-016-0150-5
Saad, M.H., Nazzal, M.A., Darras, B.M.: A general framework for sustainability assessment of manufacturing processes. Ecol. Ind. 97, 211–224 (2019). https://doi.org/10.1016/j.ecolind.2018.09.062
Mehta, K.P.: Sustainability in welding and processing. In: Gupta, K. (ed.) Innovations in Manufacturing for Sustainability. Materials Forming, Machining and Tribology. Springer, Cham (2019)
Yeo, S.H., Neo, K.G.: Inclusion of environmental performance for decision making of welding processes. J. Mater. Process. Technol. 82(1), 78–88 (1998). https://doi.org/10.1016/S0924-0136(98)00022-3
Seow, Y., Rahimifard, S.: A framework for modelling energy consumption within manufacturing systems. CIRP J. Manuf. Sci. Technol. 4(3), 258–264 (2011). https://doi.org/10.1016/j.cirpj.2011.03.007
Park, C.W., Kwon, K.S., Kim, W.B., et al.: Energy consumption reduction technology in manufacturing—a selective review of policies, standards, and research. Int. J. Precis. Eng. Manuf. 10(5), 151–173 (2009)
Weglowski, M.S., Lacha, S.B., Phillips, A.: Electron beam welding-techniques and trends-review. Vacuum 130, 72–92 (2016). https://doi.org/10.1016/j.vacuum.2016.05.004
Prepared by the American Welding Society (AWS) C7 Committee on High Energy Beam Welding and Cutting: Recommended Practices for Electron Beam Welding and Allied Processes. American Welding Society, Doral (2013)
Hallstedt, S.I.: Sustainability criteria and sustainability compliance index for decision support in product development. J. Clean. Prod. 140, 251–266 (2017)
Patel, D., Jani, S., Singh, V., Ashutosh, S.: Develop a sustainable welding procedure for chromium manganese austenitic stainless steel using the ATIG process, 2021. Eng. Res. Express. 3, 04 (2021)
Ostad-Ali-Askari, K.: Management of risks substances and sustainable development. Appl. Water Sci. 12, 65 (2022). https://doi.org/10.1007/s13201-021-01562-7.5032
Posselt, G., Kellens, K., Thiede, S., Herrmann, C., Dewulf, W., Duflou, J.R.: Combining Machine Tool Builder and Operator Perspective Towards Energy and Resource Efficiency in Manufacturing. Re-ENGINEERING MANUFACTURING for Sustainability. Springer, Singapore (2013)
Vimal, K.E.K., VinodhS, R.A.: Modelling, assessment and deployment of strategies for ensuring sustainable shielded metal arc welding process: a case study. J. Clean. Prod. 93, 364–377 (2015). https://doi.org/10.1016/j.jclepro.2015.01.049
Vimal, K.E.K., Vinodh, S.: Development of checklist for evaluating sustainability characteristics of manufacturing processes. Int. J. Process. Manag. Benchmark. 3(2), 213–232 (2013). https://doi.org/10.1504/IJPMB.2013.057726
Wei, H., Zhang, Y., Tan, L., Zhong, Z.: Energy efficiency evaluation of hot-wire laser welding based on process characteristic and power consumption. J. Clean. Prod. 87, 255–262 (2015). https://doi.org/10.1016/j.jclepro.2014.10.009
Bevilacqua, M., Ciarapica, F., Forcellese, A., Simoncini, M.: Comparison among the environmental impact of solid state and fusion welding processes in joining an aluminium alloy. Proc. Inst. Mech. Eng. B 234(1–2), 140–156 (2020). https://doi.org/10.1177/0954405419845572
Yilbasa, B.S., Shaukata, M.M., Afzalc, A.A., Ashraf, F.: Life cycle analysis for laser welding of alloys. Opt. Laser Technol. 126, 106064 (2020). https://doi.org/10.1016/j.optlastec.2020.106064
Buffa, G., Campanella, D., Lorenzo, R.D., Fratini, L., Ingarao, G.: Analysis of electrical energy demands in friction stir welding of aluminum alloys. Proc. Eng. 183, 206–212 (2017). https://doi.org/10.1016/j.proeng.2017.04.022
Choi, W.J., Morrow, J.D., Pfefferkorn, F.E., Zinn, M.R.: Welding parameter maps to help select power and energy consumption of friction stir welding. J. Manuf. Process. 33, 35–42 (2018). https://doi.org/10.1016/j.jmapro.2018.04.017
Haelsig, A., Mayr, P., Kusch, M.: Determination of energy flows for welding processes. Weld World 60, 259–266 (2016). https://doi.org/10.1007/s40194-016-0297-9
Seow, Y., Rahimifard, S.: A framework for modelling energy consumption within manufacturing systems. CIRP J. Manuf. Sci. Technol. 4, 258–264 (2011). https://doi.org/10.1016/j.cirpj.2011.03.007
Sproesser, G., Schenker, S., Pittner, A., Borndörfer, R., Rethmeiera, M., Chang, Y.J., Finkbeiner, M.: Sustainable welding process selection based on weight space partitions. Proc. CIRP 40, 127–132 (2016). https://doi.org/10.1016/j.procir.2016.01.077
Duflou, J.R., Sutherland, J.W., Dornfeld, D., Herrmann, C., Jeswiet, J., Kara, S., Kellens, K.: Towards energy and resource efficient manufacturing: a processes and systems approach. CIRP Ann.-Manuf. Technol. 61(2), 587–609 (2012). https://doi.org/10.1016/j.cirp.2012.05.002
Davim, J.P.: Statistical and Computational Techniques in Manufacturing. Springer, Berlin (2012)
Kumar, P.S.: Computationally simple and efficient method for solving reallife mixed intuitionistic fuzzy 3D assignment problems. Int. J. Softw. Sci. Comput. Intell. (2022). https://doi.org/10.4018/ijssci.291715
Kumar, P.S.: Algorithms for solving the optimization problems using fuzzy and intuitionistic fuzzy set. Int. J. Syst. Assuran. Eng. Manag. (IJSA) 11(1), 189–222 (2020). https://doi.org/10.1007/s13198-019-00941-3
Heidarzadeh, A., Testik, O.M., Güleryüz, G., Barenji, R.V.: Development of a fuzzy logic based model to elucidate the effect of FSW parameters on the ultimate tensile strength and elongation of pure copper joints. J. Manuf. Process. 53, 250–259 (2020). https://doi.org/10.1016/j.jmapro.2020.02.020
Sarkar, M., Roy, T.K.: Optimization of welded beam structure using neutrosophic optimization technique: a comparative study. Int. J. Fuzzy Syst. 20, 847–860 (2018). https://doi.org/10.1007/s40815-017-0362-6
Teimouri, R., Baseri, H.: Forward and backward predictions of the friction stir welding parameters using fuzzy-artificial bee colony-imperialist competitive algorithm systems. J. Intell. Manuf. 26, 307–319 (2015). https://doi.org/10.1007/s10845-013-0784-4
Janasekaran, S., Yusof, F., Zin, H.M., Jamaludin, M.F., Shukor, M.H.A.: A fuzzy logic-based prediction model for fracture force using low-power fiber laser beam welding. Int. J. Adv. Manuf. Technol. 91, 3603–3610 (2017). https://doi.org/10.1007/s00170-017-0073-z
Zaharuddin, M.F.A., Kim, D., Rhee, S.: An ANFIS based approach for predicting the weld strength of resistance spot welding in artificial intelligence development. J. Mech. Sci. Technol. 31(11), 5467–5476 (2017). https://doi.org/10.1007/s12206-017-1041-0
Choudhury, B., Chandrasekaran, M., Devarasiddappa, D.: Development of ANN modelling for estimation of weld strength and integrated optimization for GTAW of Inconel 825 sheets used in aero engine components. J. Braz. Soc. Mech. Sci. Eng. 42, 308 (2020). https://doi.org/10.1007/s40430-020-02390-7
Choudhary, A., Kumar, M., Gupta, M.K., Ununu, D.K., Mia, M.: Mathematical modeling and intelligent optimization of submerged arc welding process parameters using hybrid PSO-GA evolutionary algorithms. Neural Comput. Appl. 32, 5761–5774 (2020). https://doi.org/10.1007/s00521-019-04404-5
Alkayem, N.F., Parida, B., Pal, S.: Optimization of friction stir welding process using NSGA-II and DEMO. Neural Comput. Appl. 31, 947–956 (2019). https://doi.org/10.1007/s00521-017-3059-8
Rong, Y., Zhang, G., Chang, Y., Huang, Y.: Integrated optimization model of laser brazing byextreme learning machine and genetic algorithm. Int. J. Adv. Mfg. Technol. 87, 2943–2950 (2016). https://doi.org/10.1007/s00170-016-8649-6
Lozano, J.M.S., Valdenebro, J.L.M., Portoles, A.: Assessment of arc welding process through the combination of TOPSIS–AHP methods with fuzzy logic. Trans. Indian Inst. Met. 70(4), 935–946 (2017). https://doi.org/10.1007/s12666-016-0884-x
Vimal, K.E.K., Vinodh, S., Raja, A.: Optimization of process parameters of SMAW process u sing NN-FGRA from the sustainability view point. J. Intell. Manuf. 28, 1459–1480 (2015). https://doi.org/10.1007/s10845-015-1061-5
Hussain, G., Ranjbar, M., Hassanzadeh, S.: Trade-off among mechanical properties and energy consumption in multi-pass friction stir processing of Al7075 alloy employing neural network–based genetic optimization. Proc. Inst. Mech. Eng. B 231, 129–139 (2017). https://doi.org/10.1177/0954405415569817
Wei, Y., Hua, Z., Zhi-gang, J., Hon, K.K.B.: Multi-objective optimization of arc welding parameters - the trade-offs between energy and thermal efficiency. J. Clean. Prod. 140(3), 1842–1849 (2017). https://doi.org/10.1016/j.jclepro.2016.03.171
Jamal, J., Darras, B., Kishawy, H.: A study on sustainability assessment of welding processes. Proc. Inst. Mech. Eng. Part B 234, 501–512 (2019). https://doi.org/10.1177/0954405419875355
Singh, V., Chandrasekaran, M., Samanta, S., Devarasiddappa, D., Arunachalam, R.: Sustainability assessment of gas metal arc welding process of AISI 201LN using AHP–TLBO Integrated optimization methodology. J. Braz. Soc. Mech. Sci. Eng. 43, 68 (2021). https://doi.org/10.1007/s40430-020-02786-5
Rivas, D., Quiza, R., Rivas, M., Haber, R.E.: Towards sustainability of manufacturing processes by multiobjective optimization: a case study on a submerged arc welding process. IEEE Access. 8, 212904–212916 (2020). https://doi.org/10.1109/ACCESS.2020.3040196
Saad, M.H., Darras, B.M., Nazzal, M.A.: Evaluation of welding processes based on multi–dimensional sustainability assessment model. Int. J. Precis. Eng. Manuf. Green Tech. 8, 57–75 (2020)
Zhao, D., Ivanov, M., Wang, Y., Liang, D., Du, W.: Multi-objective optimization of the resistance spot welding process using a hybrid approach. J. Intell. Manuf. (2020). https://doi.org/10.1007/s10845-020-01638-2
Zhao, D., Bezgans, Y.: The use of TOPSIS-based-desirability function approach to optimize the balances among mechanical performances, energy consumption, and production efficiency of the arc welding process. Int. J. Adv. Manuf. Technol. 112, 3545–3559 (2021). https://doi.org/10.1007/s00170-021-06601-w
Choudhury, B., Chandrasekaran, M.: Microstructural investigation and integrated optimization of weld bead characteristics in electron beam welding of inconel 825. Trans. Indian Inst. Met. (2021). https://doi.org/10.1007/s12666-021-02343-1
Messler, R.W.J.: Principles of Welding: Processes, Physics, Chemistry, and Metallurgy, pp. 127–144. Wiley, Weinheim (1999)
Singh, R.: Physics of welding. In: Singh, R. (ed.) Applied Welding Engineering, 2nd edn., pp. 131–162. Butterworth-Heinemann, Oxford (2016)
Rao, R.V.: Advanced Modeling and Optimization of Manufacturing Processes. Springer, London (2011)
Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965). https://doi.org/10.1016/S0019-9958(65)90241-X
Kecman, V.: Learning and Soft Computing. The MIT Press Cambridge, Massachusetts (2001)
Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, Piscataway, NJ: IEEE Service Center. (1995) https://doi.org/10.1109/MHS.1995.494215
Piotrowski, A.P., Napiorkowski, J.J., Piotrowska, A.E.: Population size in particle swarm optimization. Swarm Evol. Comput. 58, 100718 (2020). https://doi.org/10.1016/j.swevo.2020.100718
Bratton, D., Kennedy, J.: Defining a Standard for Particle Swarm Optimization. In: 2007 IEEE swarm intelligence symposium, Honolulu, HI, 2007, pp. 120–127. https://doi.org/10.1109/SIS.2007.368035.
Chandrasekaran, M., Muralidhar, M., Krishna, C.M., Dixit, U.S.: Online machining optimization with continuous learning. In: Paulo Davim, J. (ed.) Computational Methods for Optimizing Manufacturing Technology: Models and Techniques. Engineering Science Reference. IGI Global Publication, Hershey (2012)
Xin, J., Chen, G., Hai, Y.: A particle swarm optimizer with multi-stage linearly-decreasing inertia weight. In: International Joint Conference on Computational Sciences and Optimization, pp. 505–508, https://doi.org/10.1109/CSO.2009.420 (2009)
Bansal, J.C., Singh, P.K., Saraswat, M., Verma, A., Jadon, S.S., Abraham, A.: Inertia Weight strategies in Particle Swarm Optimization, 2011 Third World Congress on Nature and Biologically Inspired Computing, 2011, pp. 633–640, https://doi.org/10.1109/NaBIC.2011.6089659 (2011)
Karaoglu, S., Secgin, A.: Sensitivity analysis of submerged arc welding process parameters. J. Mater. Process. Technol. 202, 500–507 (2008). https://doi.org/10.1016/j.jmatprotec.2007.10.035
Choudhury, B., Chandrasekaran, M.: Electron beam welding of aerospace alloy (Inconel 825): a comparative study of RSM and ANN modeling to predict weld bead area. Optik 219, 165206 (2020). https://doi.org/10.1016/j.ijleo.2020.165206
Acknowledgements
The authors acknowledge the Director, NERIST for providing the requisite funding, and authorities of IIT, Kharagpur as well as IIT, Guwahati, for facilitating experimental and testing facilities to conduct the research.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors have no conflicts of interest to declare that are relevant to the content of this article.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Choudhury, B., Chandrasekaran, M. Electron Beam Welding Investigation of Inconel 825 and Optimize Energy Consumption Using Integrated Fuzzy Logic-Particle Swarm Optimization Approach. Int. J. Fuzzy Syst. 25, 1377–1399 (2023). https://doi.org/10.1007/s40815-022-01431-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40815-022-01431-8