Skip to main content

Advertisement

Log in

Electron Beam Welding Investigation of Inconel 825 and Optimize Energy Consumption Using Integrated Fuzzy Logic-Particle Swarm Optimization Approach

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Energy is an inseparable aspect of the twenty-first century; its utilization and availability have become highly relevant to the issues of climate change and growing demands. Welding is another vital manufacturing process that requires special attention due to its energy-intensive nature and environmental burdens. Thus, a study addressing energy consumption in welding processes without compromising product quality is the need of the hour. This study looks into the energy consumption of the seldom reported electron beam welding (EBW) process while welding a popular nickel-based superalloy (Inconel 825) without compromising quality by maintaining optimal weld strength of the weldments. Four EBW parameters viz., beam current (I), accelerating voltage (V), welding speed (S), and beam oscillation (O) are selected, and their influence on the net input energy (Enet) and ultimate tensile strength (UTS) is studied. The V is found as the dominant process parameter that has a direct influence on the Enet and UTS of the weldments. A Study on sensitivity analysis inferred that the value of UTS of the weldments is highly sensitive to the change in accelerating voltage sensitivity (0–300 MPa/kV). A weldment produced with an intermediate or higher Enet has determined to have the highest achievable UTS. Furthermore, a modified integrated optimization methodology combining fuzzy logic (FL) modeling with the meta-heuristic-based particle swarm optimization (PSO) algorithm is proposed to satisfy both objectives, i.e., minimize net input energy (Enet) consumption while achieving the desired ultimate tensile strength (UTS). The methodology yields a minimum Enet of 0.1243 kJ/mm, at parameter settings of V = 60 kV, I = 38 mA, S = 1100.4 mm/min, O = 200 Hz, achieving UTS of 701.8196 MPa. The validation at the optimal parameter setting yields UTS of 711.3214 MPa with a deviation of 1.354% and is observed to be highly consistent with a faster convergence rate in the consistency test suggesting the superiority and robustness of the FL-PSO algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

EBW:

Electron beam welding

FL:

Fuzzy logic

PSO:

Particle swarm optimization

SMAW:

Shielded metal arc welding

SMSs:

Sustainable manufacturing strategies

PSI:

Process sustainability index

FSW:

Friction stir welding

LBW:

Laser beam welding

GTAW:

Gas tungsten arc welding

LCA:

Life cycle analysis

PAW:

Plasma arc welding

GMAW:

Gas metal arc welding

NSO:

Neutrosophic optimization

ABC:

Artificial bee colony

ANFIS:

Adaptive neuro-fuzzy interface system

ANN:

Artificial neural network

TLBO:

Teaching learning-based optimization

GA:

Genetic algorithm

NSGA-II:

Non dominated sorting genetic algorithm

DEMO:

Differential evolution for multi-objective

ELM:

Extreme learning machine

AHP:

Analytical hierarchy process

RSM:

Response surface methodology

MCDM:

Multi-criteria decision making

GRA:

Grey relational analysis

DoE:

Design of experiments

CCD:

Central composite design

EWDM:

Wire cut electro-discharge machining

FIS:

Fuzzy inference system

(ANOVA).:

Analysis of variance

COG:

Centre of gravity

LSA:

Local sensitivity analysis

GSA:

Global sensitivity analysis

APE:

Average percentage error

PA:

Prediction accuracy

MA:

Model accuracy

I :

Beam current

V :

Accelerating voltage

S :

Welding speed

O :

Beam oscillation

E ne t :

Net input energy

UTS :

Ultimate tensile strength

P w :

Beam power

Y :

Response characteristics

ξ :

Error term

ρ b :

Coefficients of linear terms

ρ bb :

Coefficients of square terms

ρ bc :

Coefficients of interaction terms

R 2 :

Coefficient of determination

R adj 2 :

Adjusted coefficient of determination

p best :

Particles individual best solution

g best :

Population's overall best solution

d :

Number of process variables

c 1 ,c 2 :

Learning factor

r 1, r 2 :

Random numbers

w :

Inertia weight

v ij t :

Updated velocity of particles

\({\widehat{UTS}}_{a}\).:

Achievable or actual (required)UTS

UTS a * :

Highest permitted UTS

ζ I :

Beam current sensitivity

ζ S :

Welding speed sensitivity

ζ V :

Accelerating voltage sensitivity

ζ O :

Beam oscillation sensitivity

\(\overline{Y }\) :

Model predicted value

References

  1. Rogers, P.P., Jalal, K.F., Boyd, J.A.: An introduction to Sustainable Development. Glen Educational Foundation, Inc, New York (2008)

    Google Scholar 

  2. Lee, H.T., Song, J.H., Min, S.H., Lee, H.S., Song, K.Y., Chu, C.N., Ahn, S.H.: Research trends in sustainable manufacturing: a review and future perspective based on research databases. Int. J. Precis. Eng. Manuf.-Green Technol. 6(4), 809–819 (2019). https://doi.org/10.1007/s40684-019-00113-5

    Article  Google Scholar 

  3. Yoon, H.S., Kim, M.S., Jang, K.H., Ahn, S.H.: Future perspectives of sustainable manufacturing and applications based on research databases. Int. J. Precis. Eng. Manuf. 17(9), 1249–1263 (2016). https://doi.org/10.1007/s12541-016-0150-5

    Article  Google Scholar 

  4. Saad, M.H., Nazzal, M.A., Darras, B.M.: A general framework for sustainability assessment of manufacturing processes. Ecol. Ind. 97, 211–224 (2019). https://doi.org/10.1016/j.ecolind.2018.09.062

    Article  Google Scholar 

  5. Mehta, K.P.: Sustainability in welding and processing. In: Gupta, K. (ed.) Innovations in Manufacturing for Sustainability. Materials Forming, Machining and Tribology. Springer, Cham (2019)

    Google Scholar 

  6. Yeo, S.H., Neo, K.G.: Inclusion of environmental performance for decision making of welding processes. J. Mater. Process. Technol. 82(1), 78–88 (1998). https://doi.org/10.1016/S0924-0136(98)00022-3

    Article  Google Scholar 

  7. Seow, Y., Rahimifard, S.: A framework for modelling energy consumption within manufacturing systems. CIRP J. Manuf. Sci. Technol. 4(3), 258–264 (2011). https://doi.org/10.1016/j.cirpj.2011.03.007

    Article  Google Scholar 

  8. Park, C.W., Kwon, K.S., Kim, W.B., et al.: Energy consumption reduction technology in manufacturing—a selective review of policies, standards, and research. Int. J. Precis. Eng. Manuf. 10(5), 151–173 (2009)

    Article  Google Scholar 

  9. Weglowski, M.S., Lacha, S.B., Phillips, A.: Electron beam welding-techniques and trends-review. Vacuum 130, 72–92 (2016). https://doi.org/10.1016/j.vacuum.2016.05.004

    Article  Google Scholar 

  10. Prepared by the American Welding Society (AWS) C7 Committee on High Energy Beam Welding and Cutting: Recommended Practices for Electron Beam Welding and Allied Processes. American Welding Society, Doral (2013)

    Google Scholar 

  11. Hallstedt, S.I.: Sustainability criteria and sustainability compliance index for decision support in product development. J. Clean. Prod. 140, 251–266 (2017)

    Article  Google Scholar 

  12. Patel, D., Jani, S., Singh, V., Ashutosh, S.: Develop a sustainable welding procedure for chromium manganese austenitic stainless steel using the ATIG process, 2021. Eng. Res. Express. 3, 04 (2021)

    Article  Google Scholar 

  13. Ostad-Ali-Askari, K.: Management of risks substances and sustainable development. Appl. Water Sci. 12, 65 (2022). https://doi.org/10.1007/s13201-021-01562-7.5032

    Article  Google Scholar 

  14. Posselt, G., Kellens, K., Thiede, S., Herrmann, C., Dewulf, W., Duflou, J.R.: Combining Machine Tool Builder and Operator Perspective Towards Energy and Resource Efficiency in Manufacturing. Re-ENGINEERING MANUFACTURING for Sustainability. Springer, Singapore (2013)

    Google Scholar 

  15. Vimal, K.E.K., VinodhS, R.A.: Modelling, assessment and deployment of strategies for ensuring sustainable shielded metal arc welding process: a case study. J. Clean. Prod. 93, 364–377 (2015). https://doi.org/10.1016/j.jclepro.2015.01.049

    Article  Google Scholar 

  16. Vimal, K.E.K., Vinodh, S.: Development of checklist for evaluating sustainability characteristics of manufacturing processes. Int. J. Process. Manag. Benchmark. 3(2), 213–232 (2013). https://doi.org/10.1504/IJPMB.2013.057726

    Article  Google Scholar 

  17. Wei, H., Zhang, Y., Tan, L., Zhong, Z.: Energy efficiency evaluation of hot-wire laser welding based on process characteristic and power consumption. J. Clean. Prod. 87, 255–262 (2015). https://doi.org/10.1016/j.jclepro.2014.10.009

    Article  Google Scholar 

  18. Bevilacqua, M., Ciarapica, F., Forcellese, A., Simoncini, M.: Comparison among the environmental impact of solid state and fusion welding processes in joining an aluminium alloy. Proc. Inst. Mech. Eng. B 234(1–2), 140–156 (2020). https://doi.org/10.1177/0954405419845572

    Article  Google Scholar 

  19. Yilbasa, B.S., Shaukata, M.M., Afzalc, A.A., Ashraf, F.: Life cycle analysis for laser welding of alloys. Opt. Laser Technol. 126, 106064 (2020). https://doi.org/10.1016/j.optlastec.2020.106064

    Article  Google Scholar 

  20. Buffa, G., Campanella, D., Lorenzo, R.D., Fratini, L., Ingarao, G.: Analysis of electrical energy demands in friction stir welding of aluminum alloys. Proc. Eng. 183, 206–212 (2017). https://doi.org/10.1016/j.proeng.2017.04.022

    Article  Google Scholar 

  21. Choi, W.J., Morrow, J.D., Pfefferkorn, F.E., Zinn, M.R.: Welding parameter maps to help select power and energy consumption of friction stir welding. J. Manuf. Process. 33, 35–42 (2018). https://doi.org/10.1016/j.jmapro.2018.04.017

    Article  Google Scholar 

  22. Haelsig, A., Mayr, P., Kusch, M.: Determination of energy flows for welding processes. Weld World 60, 259–266 (2016). https://doi.org/10.1007/s40194-016-0297-9

    Article  Google Scholar 

  23. Seow, Y., Rahimifard, S.: A framework for modelling energy consumption within manufacturing systems. CIRP J. Manuf. Sci. Technol. 4, 258–264 (2011). https://doi.org/10.1016/j.cirpj.2011.03.007

    Article  Google Scholar 

  24. Sproesser, G., Schenker, S., Pittner, A., Borndörfer, R., Rethmeiera, M., Chang, Y.J., Finkbeiner, M.: Sustainable welding process selection based on weight space partitions. Proc. CIRP 40, 127–132 (2016). https://doi.org/10.1016/j.procir.2016.01.077

    Article  Google Scholar 

  25. Duflou, J.R., Sutherland, J.W., Dornfeld, D., Herrmann, C., Jeswiet, J., Kara, S., Kellens, K.: Towards energy and resource efficient manufacturing: a processes and systems approach. CIRP Ann.-Manuf. Technol. 61(2), 587–609 (2012). https://doi.org/10.1016/j.cirp.2012.05.002

    Article  Google Scholar 

  26. Davim, J.P.: Statistical and Computational Techniques in Manufacturing. Springer, Berlin (2012)

    Book  Google Scholar 

  27. Kumar, P.S.: Computationally simple and efficient method for solving reallife mixed intuitionistic fuzzy 3D assignment problems. Int. J. Softw. Sci. Comput. Intell. (2022). https://doi.org/10.4018/ijssci.291715

    Article  Google Scholar 

  28. Kumar, P.S.: Algorithms for solving the optimization problems using fuzzy and intuitionistic fuzzy set. Int. J. Syst. Assuran. Eng. Manag. (IJSA) 11(1), 189–222 (2020). https://doi.org/10.1007/s13198-019-00941-3

    Article  Google Scholar 

  29. Heidarzadeh, A., Testik, O.M., Güleryüz, G., Barenji, R.V.: Development of a fuzzy logic based model to elucidate the effect of FSW parameters on the ultimate tensile strength and elongation of pure copper joints. J. Manuf. Process. 53, 250–259 (2020). https://doi.org/10.1016/j.jmapro.2020.02.020

    Article  Google Scholar 

  30. Sarkar, M., Roy, T.K.: Optimization of welded beam structure using neutrosophic optimization technique: a comparative study. Int. J. Fuzzy Syst. 20, 847–860 (2018). https://doi.org/10.1007/s40815-017-0362-6

    Article  MathSciNet  Google Scholar 

  31. Teimouri, R., Baseri, H.: Forward and backward predictions of the friction stir welding parameters using fuzzy-artificial bee colony-imperialist competitive algorithm systems. J. Intell. Manuf. 26, 307–319 (2015). https://doi.org/10.1007/s10845-013-0784-4

    Article  Google Scholar 

  32. Janasekaran, S., Yusof, F., Zin, H.M., Jamaludin, M.F., Shukor, M.H.A.: A fuzzy logic-based prediction model for fracture force using low-power fiber laser beam welding. Int. J. Adv. Manuf. Technol. 91, 3603–3610 (2017). https://doi.org/10.1007/s00170-017-0073-z

    Article  Google Scholar 

  33. Zaharuddin, M.F.A., Kim, D., Rhee, S.: An ANFIS based approach for predicting the weld strength of resistance spot welding in artificial intelligence development. J. Mech. Sci. Technol. 31(11), 5467–5476 (2017). https://doi.org/10.1007/s12206-017-1041-0

    Article  Google Scholar 

  34. Choudhury, B., Chandrasekaran, M., Devarasiddappa, D.: Development of ANN modelling for estimation of weld strength and integrated optimization for GTAW of Inconel 825 sheets used in aero engine components. J. Braz. Soc. Mech. Sci. Eng. 42, 308 (2020). https://doi.org/10.1007/s40430-020-02390-7

    Article  Google Scholar 

  35. Choudhary, A., Kumar, M., Gupta, M.K., Ununu, D.K., Mia, M.: Mathematical modeling and intelligent optimization of submerged arc welding process parameters using hybrid PSO-GA evolutionary algorithms. Neural Comput. Appl. 32, 5761–5774 (2020). https://doi.org/10.1007/s00521-019-04404-5

    Article  Google Scholar 

  36. Alkayem, N.F., Parida, B., Pal, S.: Optimization of friction stir welding process using NSGA-II and DEMO. Neural Comput. Appl. 31, 947–956 (2019). https://doi.org/10.1007/s00521-017-3059-8

    Article  Google Scholar 

  37. Rong, Y., Zhang, G., Chang, Y., Huang, Y.: Integrated optimization model of laser brazing byextreme learning machine and genetic algorithm. Int. J. Adv. Mfg. Technol. 87, 2943–2950 (2016). https://doi.org/10.1007/s00170-016-8649-6

    Article  Google Scholar 

  38. Lozano, J.M.S., Valdenebro, J.L.M., Portoles, A.: Assessment of arc welding process through the combination of TOPSIS–AHP methods with fuzzy logic. Trans. Indian Inst. Met. 70(4), 935–946 (2017). https://doi.org/10.1007/s12666-016-0884-x

    Article  Google Scholar 

  39. Vimal, K.E.K., Vinodh, S., Raja, A.: Optimization of process parameters of SMAW process u sing NN-FGRA from the sustainability view point. J. Intell. Manuf. 28, 1459–1480 (2015). https://doi.org/10.1007/s10845-015-1061-5

    Article  Google Scholar 

  40. Hussain, G., Ranjbar, M., Hassanzadeh, S.: Trade-off among mechanical properties and energy consumption in multi-pass friction stir processing of Al7075 alloy employing neural network–based genetic optimization. Proc. Inst. Mech. Eng. B 231, 129–139 (2017). https://doi.org/10.1177/0954405415569817

    Article  Google Scholar 

  41. Wei, Y., Hua, Z., Zhi-gang, J., Hon, K.K.B.: Multi-objective optimization of arc welding parameters - the trade-offs between energy and thermal efficiency. J. Clean. Prod. 140(3), 1842–1849 (2017). https://doi.org/10.1016/j.jclepro.2016.03.171

    Article  Google Scholar 

  42. Jamal, J., Darras, B., Kishawy, H.: A study on sustainability assessment of welding processes. Proc. Inst. Mech. Eng. Part B 234, 501–512 (2019). https://doi.org/10.1177/0954405419875355

    Article  Google Scholar 

  43. Singh, V., Chandrasekaran, M., Samanta, S., Devarasiddappa, D., Arunachalam, R.: Sustainability assessment of gas metal arc welding process of AISI 201LN using AHP–TLBO Integrated optimization methodology. J. Braz. Soc. Mech. Sci. Eng. 43, 68 (2021). https://doi.org/10.1007/s40430-020-02786-5

    Article  Google Scholar 

  44. Rivas, D., Quiza, R., Rivas, M., Haber, R.E.: Towards sustainability of manufacturing processes by multiobjective optimization: a case study on a submerged arc welding process. IEEE Access. 8, 212904–212916 (2020). https://doi.org/10.1109/ACCESS.2020.3040196

    Article  Google Scholar 

  45. Saad, M.H., Darras, B.M., Nazzal, M.A.: Evaluation of welding processes based on multi–dimensional sustainability assessment model. Int. J. Precis. Eng. Manuf. Green Tech. 8, 57–75 (2020)

    Article  Google Scholar 

  46. Zhao, D., Ivanov, M., Wang, Y., Liang, D., Du, W.: Multi-objective optimization of the resistance spot welding process using a hybrid approach. J. Intell. Manuf. (2020). https://doi.org/10.1007/s10845-020-01638-2

    Article  Google Scholar 

  47. Zhao, D., Bezgans, Y.: The use of TOPSIS-based-desirability function approach to optimize the balances among mechanical performances, energy consumption, and production efficiency of the arc welding process. Int. J. Adv. Manuf. Technol. 112, 3545–3559 (2021). https://doi.org/10.1007/s00170-021-06601-w

    Article  Google Scholar 

  48. Choudhury, B., Chandrasekaran, M.: Microstructural investigation and integrated optimization of weld bead characteristics in electron beam welding of inconel 825. Trans. Indian Inst. Met. (2021). https://doi.org/10.1007/s12666-021-02343-1

    Article  Google Scholar 

  49. Messler, R.W.J.: Principles of Welding: Processes, Physics, Chemistry, and Metallurgy, pp. 127–144. Wiley, Weinheim (1999)

    Book  Google Scholar 

  50. Singh, R.: Physics of welding. In: Singh, R. (ed.) Applied Welding Engineering, 2nd edn., pp. 131–162. Butterworth-Heinemann, Oxford (2016)

    Chapter  Google Scholar 

  51. Rao, R.V.: Advanced Modeling and Optimization of Manufacturing Processes. Springer, London (2011)

    Book  Google Scholar 

  52. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965). https://doi.org/10.1016/S0019-9958(65)90241-X

    Article  MATH  Google Scholar 

  53. Kecman, V.: Learning and Soft Computing. The MIT Press Cambridge, Massachusetts (2001)

    MATH  Google Scholar 

  54. Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, Piscataway, NJ: IEEE Service Center. (1995) https://doi.org/10.1109/MHS.1995.494215

  55. Piotrowski, A.P., Napiorkowski, J.J., Piotrowska, A.E.: Population size in particle swarm optimization. Swarm Evol. Comput. 58, 100718 (2020). https://doi.org/10.1016/j.swevo.2020.100718

    Article  Google Scholar 

  56. Bratton, D., Kennedy, J.: Defining a Standard for Particle Swarm Optimization. In: 2007 IEEE swarm intelligence symposium, Honolulu, HI, 2007, pp. 120–127. https://doi.org/10.1109/SIS.2007.368035.

  57. Chandrasekaran, M., Muralidhar, M., Krishna, C.M., Dixit, U.S.: Online machining optimization with continuous learning. In: Paulo Davim, J. (ed.) Computational Methods for Optimizing Manufacturing Technology: Models and Techniques. Engineering Science Reference. IGI Global Publication, Hershey (2012)

    Google Scholar 

  58. Xin, J., Chen, G., Hai, Y.: A particle swarm optimizer with multi-stage linearly-decreasing inertia weight. In: International Joint Conference on Computational Sciences and Optimization, pp. 505–508, https://doi.org/10.1109/CSO.2009.420 (2009)

  59. Bansal, J.C., Singh, P.K., Saraswat, M., Verma, A., Jadon, S.S., Abraham, A.: Inertia Weight strategies in Particle Swarm Optimization, 2011 Third World Congress on Nature and Biologically Inspired Computing, 2011, pp. 633–640, https://doi.org/10.1109/NaBIC.2011.6089659 (2011)

  60. Karaoglu, S., Secgin, A.: Sensitivity analysis of submerged arc welding process parameters. J. Mater. Process. Technol. 202, 500–507 (2008). https://doi.org/10.1016/j.jmatprotec.2007.10.035

    Article  Google Scholar 

  61. Choudhury, B., Chandrasekaran, M.: Electron beam welding of aerospace alloy (Inconel 825): a comparative study of RSM and ANN modeling to predict weld bead area. Optik 219, 165206 (2020). https://doi.org/10.1016/j.ijleo.2020.165206

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Director, NERIST for providing the requisite funding, and authorities of IIT, Kharagpur as well as IIT, Guwahati, for facilitating experimental and testing facilities to conduct the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Chandrasekaran.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhury, B., Chandrasekaran, M. Electron Beam Welding Investigation of Inconel 825 and Optimize Energy Consumption Using Integrated Fuzzy Logic-Particle Swarm Optimization Approach. Int. J. Fuzzy Syst. 25, 1377–1399 (2023). https://doi.org/10.1007/s40815-022-01431-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-022-01431-8

Keywords