Skip to main content

Advertisement

Log in

A New Representation Method for Type-2 Fuzzy Sets and Its Application to Multiple Criteria Decision Making

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Type-2 fuzzy sets (T2FSs) have the advantage of representing higher-order uncertainty, they have shown excellent performance in system modeling. However, complexity in mathematical expressions and fundamental operations restricts their application in multi-criteria decision-making. To address this issue, a new representation method for T2FSs is first proposed, and the concepts of double, single discrete T2FSs and single continuous T2FSs are introduced, respectively. Further, the fundamental operations, ranking method and decision-making interpretations for double discrete T2FSs are studied, and the axiomatic framework of fuzzy entropy and distance measure for double discrete T2FSs are also defined. Finally, the technique for order preference by similarity to ideal solution method in type-2 fuzzy environment is developed, and the practicability and effectiveness of the proposed definition and decision-making method are illustrated by validity tests and comparative analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

All data are included in the manus-cript.

References

  1. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    MATH  Google Scholar 

  2. Wang, X.Z., Ruan, D., Kerre, E.E.: Mathematics of Fuzziness-Basic Issues. Springer, Berlin (2009)

    MATH  Google Scholar 

  3. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning-I. Inf. Sci. 8(3), 199–249 (1975)

    MathSciNet  MATH  Google Scholar 

  4. Pan, Y., Li, Q., Liang, H., Lam, H.K.: A novel mixed control approach for fuzzy systems via membership functions online learning policy. IEEE Trans. Fuzzy Syst. (2021). https://doi.org/10.1109/TFUZZ.2021.3130201

    Article  Google Scholar 

  5. Bellman, R.E., Zadeh, L.A.: Decision-making in a fuzzy environment. Manag. Sci. 17(4), 141–164 (1970)

    MathSciNet  MATH  Google Scholar 

  6. Zimmermann, H.J.: Fuzzy Set Theory and Its Applications. Kluwer Academic Publishers, London (1991)

    MATH  Google Scholar 

  7. Qin, J.D., Liu, X.W.: Type-2 Fuzzy Decision-Making Theories, Methodologies and Applications. Springer, Singapore (2019)

    MATH  Google Scholar 

  8. Mendel, J.M.: The perceptual computer: an architecture for computing with words. In: Proceedings of the 10th IEEE International Conference on Fuzzy Systems, pp. 35-38 (2001)

  9. Karnik, N.N., Mendel, J.M.: Centroid of a type-2 fuzzy set. Inf. Sci. 132(1), 195–220 (2001)

    MathSciNet  MATH  Google Scholar 

  10. Wu, D.R., Mendel, J.M.: Aggregation using the linguistic weighted average and interval type-2 fuzzy sets. IEEE Trans. Fuzzy Syst. 15(6), 1145–1161 (2007)

    Google Scholar 

  11. Wu, D.R., Mendel, J.M.: A comparative study of ranking methods, similarity measures and uncertainty measures for interval type-2 fuzzy sets. Inf. Sci. 179(8), 1169–1192 (2009)

    MathSciNet  Google Scholar 

  12. Mizumoto, M., Tanaka, K.: Some properties of fuzzy sets of type-2. Inf. Control 31, 312–340 (1976)

    MathSciNet  MATH  Google Scholar 

  13. Mendel, J.M., John, R.I.B.: Type-2 fuzzy sets made simple. IEEE Trans. Fuzzy Syst. 10(2), 117–127 (2002)

    Google Scholar 

  14. Mendel, J.M., Rajati, M.R., Sussner, P.: On clarifying some definitions and notations used for type-2 fuzzy sets as well as some recommended changes. Inf. Sci. 340–341, 337–345 (2016)

    MathSciNet  MATH  Google Scholar 

  15. Mo, H., Wang, J., Li, X., Wu, Z.L.: Linguistic dynamic modeling and analysis of psychological health state using interval type-2 fuzzy sets. IEEE/CAA J Autom. 2(4), 366–373 (2015)

    MathSciNet  Google Scholar 

  16. Chiclana, F., Zhou, S.M.: Type-reduction of general type-2 fuzzy sets: the type-1 OWA approach. Int. J. Intell. Syst. 28(5), 505–522 (2013)

    Google Scholar 

  17. De Miguel, L., Santos, H., Sesma-Sara, M., Bedregal, B., Jurio, A.: Type-2 fuzzy entropy-sets. IEEE Trans. Fuzzy Syst. 25(4), 993–1005 (2017)

    Google Scholar 

  18. Rickard, J.T., Aisbett, J., Gibbon, G.: Fuzzy subsethood for fuzzy sets of type-2 and generalized type-n. IEEE Trans. Fuzzy Syst. 17(1), 50–60 (2009)

    Google Scholar 

  19. Mo, H., Wang, F.Y., Zhou, M., Li, R.M., Xiao, Z.Q.: Footprint of uncertainty for type-2 fuzzy sets. Inf. Sci. 272, 96–110 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Pan, Y., Wu, Y.M., Lam, H.K.: Security-based fuzzy control for nonlinear networked control systems with DoS attacks via a resilient event-triggered scheme. IEEE Trans. Fuzzy Syst. (2022). https://doi.org/10.1109/TFUZZ.2022.3148875

    Article  Google Scholar 

  21. John, R., Hagras, H., Castillo, O.: Type-2 Fuzzy Logic and Systems: Dedicated to Professor Jerry Mendel for his Pioneering Contribution. Springer, Berlin (2018)

    MATH  Google Scholar 

  22. Melin, P., Martinez, G.E.: Extension of the Fuzzy Sugeno Integral Based on Generalized Type-2 Fuzzy Logic. Springer, Berlin (2020)

    MATH  Google Scholar 

  23. Tang, G.L., Chiclana, F., Lin, X.C., Liu, P.D.: Interval type-2 fuzzy multi-attribute decision-making approaches for evaluating the service quality of Chinese commercial banks. Knowl.-Based Syst. 193, 105438 (2020)

    Google Scholar 

  24. Wu, D.R., Zhang, H.T., Huang, J.: A constrained representation theorem for well-shaped interval type-2 fuzzy sets, and the corresponding constrained uncertainty measures. IEEE Trans. Fuzzy Syst. 27(6), 1237–1251 (2019)

    Google Scholar 

  25. Yang, Y.Y., Liu, X.W., Liu, F.: Trapezoidal interval type-2 fuzzy TOPSIS using alpha-cuts. Int. J. Fuzzy Syst. 22(1), 293–309 (2020)

    Google Scholar 

  26. McCulloch, J., Wagner, C.: On the choice of similarity measures for type-2 fuzzy sets. Inf. Sci. 510, 135–154 (2020)

    MATH  Google Scholar 

  27. Xu, Z., Qin, J.D., Liu, J., Martínez, L.: Sustainable supplier selection based on AHPSort II in interval type-2 fuzzy environment. Inf. Sci. 483, 273–293 (2019)

    Google Scholar 

  28. Chen, T.Y.: An interval type-2 fuzzy PROMETHEE method using a likelihood-based outranking comparison approach. Inf. Fusion 25, 105–120 (2015)

    Google Scholar 

  29. Ureña, R., Kou, G., Wu, J., Chiclana, F., Herrera-Viedma, E.: Dealing with incomplete information in linguistic group decision making by means of interval type-2 fuzzy sets. Int. J. Intell. Syst. 34(6), 1261–1280 (2019)

    Google Scholar 

  30. Qin, J.D., Liu, X.W., Pedrycz, W.: A multiple attribute interval type-2 fuzzy group decision making and its application to supplier selection with extended LINMAP method. Soft Comput. 21(12), 3207–3226 (2017)

    MATH  Google Scholar 

  31. Wu, T., Liu, X.W., Liu, F.: An interval type-2 fuzzy TOPSIS model for large scale group decision making problems with social network information. Inf. Sci. 432, 392–410 (2018)

    MathSciNet  MATH  Google Scholar 

  32. Qin, J.D., Liu, X.W., Pedrycz, W.: An extended VIKOR method based on prospect theory for multiple attribute decision making under interval type-2 fuzzy environment. Knowl.-Based Syst. 86, 116–130 (2015)

    Google Scholar 

  33. Qin, J.D., Liu, X.W., Pedrycz, W.: An extended TODIM multi-criteria group decision making method for green supplier selection in interval type-2 fuzzy environment. Eur. J. Oper. Res. 258(2), 626–638 (2017)

    MathSciNet  MATH  Google Scholar 

  34. Türk, S., Deveci, M., Özcan, E., Canıtez, F., John, R.: Interval type-2 fuzzy sets improved by simulated annealing for locating the electric charging stations. Inf. Sci. 547, 641–666 (2021)

    MathSciNet  MATH  Google Scholar 

  35. Qin, J.D., Xi, Y., Pedrycz, W.: Failure mode and effects analysis (FMEA) for risk assessment based on interval type-2 fuzzy evidential reasoning method. Appl. Soft Comput. 89, 106134 (2020)

    Google Scholar 

  36. Mendel, J.M., John, R.I., Liu, F.L.: Interval type-2 fuzzy logical systems made simple. IEEE Trans. Fuzzy Syst. 14(6), 808–821 (2006)

    Google Scholar 

  37. Lee, L.W., Chen, S.M.: Fuzzy multiple attributes group decision-making based on the extension of TOPSIS method and interval type-2 fuzzy sets. In: Proceedings of the 2008 International Conference on Machine Learning and Cybernetic, pp. 3260-3265 (2008)

  38. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986)

    MATH  Google Scholar 

  39. De, S.K., Biswas, R., Roy, A.R.: Some operations on intuitionistic fuzzy sets. Fuzzy Sets Syst. 114, 477–484 (2000)

    MathSciNet  MATH  Google Scholar 

  40. Yao, J.S., Lin, F.T.: Constructing a fuzzy flow-shop sequencing model based on statistical data. Int. J. Approx. Reason. 29(3), 215–234 (2002)

    MathSciNet  MATH  Google Scholar 

  41. Chen, S.M., Chen, J.H.: Fuzzy risk analysis based on similarity measures between interval-valued fuzzy numbers and interval-valued fuzzy number arithmetic operators. Expert Syst. Appl. 36(2–3), 6309–6317 (2009)

    Google Scholar 

  42. Chen, T.Y.: Multiple criteria group decision-making with generalized interval-valued fuzzy numbers based on signed distances and incomplete weights. Appl. Math. Model. 36(7), 3029–3052 (2012)

    MathSciNet  MATH  Google Scholar 

  43. Chen, S.M., Yang, M.W., Lee, L.W., Yang, S.W.: Fuzzy multiple attributes group decision-making based on ranking interval type-2 fuzzy sets. Expert Syst. Appl. 39(5), 5295–5308 (2012)

    Google Scholar 

  44. Chen, S.M., Hong, J.A.: Fuzzy multiple attributes group decision-making based on ranking interval type-2 fuzzy sets and the TOPSIS method. IEEE Trans. Syst. Man Cybern.-Syst. 44(12), 1665–1673 (2014)

    MathSciNet  Google Scholar 

  45. Xu, T.T., Zhang, H., Li, B.Q.: Pythagorean fuzzy entropy and its application in multiple-criteria decision-making. Int. J. Fuzzy Syst. 22(5), 1552–1564 (2020)

    Google Scholar 

  46. Xu, T.T., Zhang, H., Li, B.Q.: Fuzzy entropy and hesitancy entropy in probabilistic hesitant fuzzy information and their applications. Soft Comput. (2022). https://doi.org/10.1007/s00500-022-07309-z

    Article  Google Scholar 

  47. Xu, T.T., Zhang, H., Li, B.Q.: Pythagorean fuzzy TOPSIS method based on 2-tuple probability weight. J. Intell. Fuzzy Syst. 40, 9113–9126 (2021)

    Google Scholar 

  48. Xu, T.T., Zhang, H., Li, B.Q.: Axiomatic framework of fuzzy entropy and hesitancy entropy in fuzzy environment. Soft Comput. 25(2), 1219–1238 (2021)

    MATH  Google Scholar 

  49. Liu, X.C.: Entropy, distance measure and similarity measure of fuzzy sets and their relations. Fuzzy Sets Syst. 52, 305–318 (1992)

    MathSciNet  MATH  Google Scholar 

  50. Wang, X., Triantaphyllou, E.: Ranking irregularities when evaluating alternatives by using some ELECTRE methods. Omega 36(1), 45–63 (2008)

    Google Scholar 

  51. Chen, S.M., Lee, L.W.: Fuzzy multiple attributes group decision-making based on the interval type-2 TOPSIS method. Expert Syst. Appl. 37(4), 2790–2798 (2010)

    Google Scholar 

  52. Chen, S.M., Lee, L.W.: Fuzzy multiple attributes group decision-making based on the ranking values and the arithmetic operations of interval type-2 fuzzy sets. Expert Syst. Appl. 37(1), 824–833 (2010)

    Google Scholar 

  53. Li, Z., Zhang, Z., Yu, W.: Consensus reaching with consistency control in group decision making with incomplete hesitant fuzzy linguistic preference relations. Comput. Ind. Eng. 170, 108311 (2022)

    Google Scholar 

  54. Gao, Y., Zhang, Z.: Consensus reaching with non-cooperative behavior management for personalized individual semantics-based social network group decision making. J. Oper. Res. Soc. (2021). https://doi.org/10.1080/01605682.2021.1997654

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to everyone for suggestions, which have been very helpful in improving the paper. This research are supported by the National Natural Science Foundation of China (No.72071151), and the Natural Science Foundation of Hubei Province (No.2020C FB773).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Dong Qin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

1.1 Proof of Theorem 2

Proof

Verifying that (1), (3) and (5) in Theorem 2 hold true, the remaining (2), (4) and (6) can be similarly proved. According to Definitions 7 and 8, the following results can be obtained:

(1) \((\tilde{A}_{1}^{c})^{\lambda }=\{\langle x_{i},((\mu _{\tilde{A}_{1}}(x_{i}))^{c})^{\lambda }\rangle |x_{i}\in X, ((\mu _{\tilde{A}_{1}}(x_{i}))^{c})^{\lambda }\)

\(=\{\langle \tau _{j},(1-\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j}))^{\lambda }\rangle |\tau _{j}\in [0,1],\)

\((1-\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j}))^{\lambda }\in [0,1]\}\}\),

\((\lambda \tilde{A}_{1})^{c}\) \(=\{\langle x_{i},(\lambda \mu _{\tilde{A}_{1}}(x_{i}))^{c}\rangle |x_{i}\in X, (\lambda \mu _{\tilde{A}_{1}}(x_{i}))^{c}\)

\(=\{\langle \tau _{j},1-(1-(1-\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j}))^{\lambda })\rangle |\tau _{j}\)

\(\in [0,1],(1-(1-(1-\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j}))^{\lambda }))\)

\(\in [0,1]\}\}\),

and since

\((1-\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j}))^{\lambda }=1 -(1-(1-\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j}))^{\lambda })\),

so \((\tilde{A}_{1}^{c})^{\lambda }=(\lambda \tilde{A}_{1})^{c}\).

(3) \(\tilde{A}_{1}^{c}\cup \tilde{A}_{2}^{c}\)

\(=\{\langle x_{i},(\mu _{\tilde{A}_{1}}(x_{i}))^{c}\cup (\mu _{\tilde{A}_{2}}(x_{i}))^{c}\rangle |x_{i}\in X,\)

\((\mu _{\tilde{A}_{1}}(x_{i}))^{c}\cup (\mu _{\tilde{A}_{2}}(x_{i}))^{c}=\{\langle \tau _{j},\max (1-\)

\(\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j}),1-\mu _{\mu _{\tilde{A}_{2}}(x_{i})}(\tau _{j}))\rangle |\tau _{j}\in [0,1],\)

\(\max (1-\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j}),1-\mu _{\mu _{\tilde{A}_{2}}(x_{i})}(\tau _{j}))\)

\(\in [0,1]\}\}\),

\((\tilde{A}_{1}\cap \tilde{A}_{2})^{c}\)

\(=\{\langle x_{i},(\mu _{\tilde{A}_{1}}(x_{i})\cap \mu _{\tilde{A}_{2}}(x_{i}))^{c}\rangle |x_{i}\in X, (\mu _{\tilde{A}_{1}}(x_{i})\)

\(\cap \mu _{\tilde{A}_{2}}(x_{i}))^{c}=\{\langle \tau _{j},1-\min (\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j}),\)

\(\mu _{\mu _{\tilde{A}_{2}}(x_{i})}(\tau _{j}))\rangle |\tau _{j}\in [0,1], (1-\min (\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j}),\)

\(\mu _{\mu _{\tilde{A}_{2}}(x_{i})}(\tau _{j})))\in [0,1]\}\}\).

Since \(1-\min (\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j}),\mu _{\mu _{\tilde{A}_{2}} (x_{i})}(\tau _{j}))=\max (1-\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j}),1-\mu _{\mu _{\tilde{A}_{2}}(x_{i})}(\tau _{j}))\), hence \(\tilde{A}_{1}^{c}\cup \tilde{A}_{2}^{c}=(\tilde{A}_{1}\cap \tilde{A}_{2})^{c}\).

(5) \(\tilde{A}_{1}^{\lambda }\cup \tilde{A}_{2}^{\lambda }\)

\(~~=\{\langle x_{i},(\mu _{\tilde{A}_{1}}(x_{i}))^{\lambda }\cup (\mu _{\tilde{A}_{2}}(x_{i}))^{\lambda }\rangle |x_{i}\in X,\)

\((\mu _{\tilde{A}_{1}}(x_{i}))^{\lambda }\cup (\mu _{\tilde{A}_{2}}(x_{i}))^{\lambda } =\{\langle \tau _{j},\)

\(\max ((\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j}))^{\lambda },(\mu _{\mu _{\tilde{A}_{2}}(x_{i})}(\tau _{j}))^{\lambda })\rangle |\)

\(\tau _{j}\in [0,1],\max ((\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j}))^{\lambda },(\mu _{\mu _{\tilde{A}_{2}}(x_{i})}(\tau _{j}))^{\lambda })\)

\(\in [0,1]\}\}\),

\((\tilde{A}_{1}\cup \tilde{A}_{2})^{\lambda }\)

\(=\{\langle x_{i},(\mu _{\tilde{A}_{1}}(x_{i})\cup \mu _{\tilde{A}_{2}}(x_{i}))^{\lambda }\rangle |x_{i}\in X,\)

\((\mu _{\tilde{A}_{1}}(x_{i})\cup \mu _{\tilde{A}_{2}}(x_{i}))^{\lambda }=\{\langle \tau _{j},\)

\((\max (\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j}),\mu _{\mu _{\tilde{A}_{2}}(x_{i})}(\tau _{j})))^{\lambda }\rangle |\tau _{j}\in [0,1],\)

\((\max (\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j}),\mu _{\mu _{\tilde{A}_{2}}(x_{i})}(\tau _{j})))^{\lambda }\in [0,1]\}\}\),

and since

\(\max ((\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j}))^{\lambda },(\mu _{\mu _{\tilde{A}_{2}}(x_{i})}(\tau _{j}))^{\lambda })\)

\(=(\max (\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j}),\mu _{\mu _{\tilde{A}_{2}}(x_{i})}(\tau _{j})))^{\lambda }\),

thus, \(\tilde{A}_{1}^{\lambda }\cup \tilde{A}_{2}^{\lambda }=(\tilde{A}_{1}\cup \tilde{A}_{2})^{\lambda }\).

Proof of Theorem 3

Proof

Verifying that (1), (3) and (5) in Theorem 3 are valid, the rest (2), (4) and (6) can be proved in a similar manner. By Definitions 7 and 8, we can obtain

(1) \(\tilde{A}_{1}^{c}\otimes \tilde{A}_{2}^{c}\)

\(=\{\langle x_{i},(\mu _{\tilde{A}_{1}}(x_{i}))^{c}\otimes (\mu _{\tilde{A}_{1}}(x_{i}))^{c}\rangle |x_{i}\in X,\)

\((\mu _{\tilde{A}_{1}}(x_{i}))^{c}\otimes (\mu _{\tilde{A}_{1}}(x_{i}))^{c}=\{\langle \tau _{j},(1-\)

\(\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j}))(1-\mu _{\mu _{\tilde{A}_{2}}(x_{i})}(\tau _{j}))\rangle |\tau _{j}\in [0,1],\)

\((1-\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j}))(1-\mu _{\mu _{\tilde{A}_{2}}(x_{i})}(\tau _{j}))\in [0,1]\}\}\),

\((\tilde{A}_{1}\oplus \tilde{A}_{2})^{c}\)

\(=\{\langle x_{i},(\mu _{\tilde{A}_{1}}(x_{i})\oplus \mu _{\tilde{A}_{2}}(x_{i}))^{c}\rangle |x_{i}\in X,\)

\((\mu _{\tilde{A}_{1}}(x_{i})\oplus \mu _{\tilde{A}_{2}}(x_{i}))^{c}=\{\langle \tau _{j},1-\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j})\)

\(-\mu _{\mu _{\tilde{A}_{2}}(x_{i})}(\tau _{j})+\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j})\mu _{\mu _{\tilde{A}_{2}}(x_{i})}(\tau _{j})\rangle |\tau _{j}\)

\(\in [0,1],(1-\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j})-\mu _{\mu _{\tilde{A}_{2}}(x_{i})}(\tau _{j})+\)

\(\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j})\mu _{\mu _{\tilde{A}_{2}}(x_{i})}(\tau _{j}))\in [0,1]\}\}\).

Because \((1-\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j}))(1-\mu _{\mu _{\tilde{A}_{2}}(x_{i})}(\tau _{j}))= 1-\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j})-\mu _{\mu _{\tilde{A}_{2}}(x_{i})}(\tau _{j})+ \mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j})\mu _{\mu _{\tilde{A}_{2}}(x_{i})}(\tau _{j})\),

\(\tilde{A}_{1}^{c}\otimes \tilde{A}_{2}^{c}=(\tilde{A}_{1}\oplus \tilde{A}_{2})^{c}\).

(3) \(\tilde{A}_{1}^{\lambda }\otimes \tilde{A}_{2}^{\lambda }\)

\(=\{\langle x_{i},(\mu _{\tilde{A}_{1}}(x_{i}))^{\lambda }\otimes (\mu _{\tilde{A}_{1}}(x_{i}))^{\lambda }\rangle |x_{i}\in X,\)

\((\mu _{\tilde{A}_{1}}(x_{i}))^{\lambda }\otimes (\mu _{\tilde{A}_{1}}(x_{i}))^{\lambda }=\{\langle \tau _{j},\)

\((\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j}))^{\lambda }(\mu _{\mu _{\tilde{A}_{2}}(x_{i})}(\tau _{j}))^{\lambda }\rangle |\tau _{j}\in [0,1],\)

\((\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j}))^{\lambda }(\mu _{\mu _{\tilde{A}_{2}}(x_{i})}(\tau _{j}))^{\lambda }\in [0,1]\}\}\),

\((\tilde{A}_{1}\otimes \tilde{A}_{2})^{\lambda }\)

\(=\{\langle x_{i},(\mu _{\tilde{A}_{1}}(x_{i})\otimes \mu _{\tilde{A}_{2}}(x_{i}))^{\lambda }\rangle |x_{i}\in X,\)

\((\mu _{\tilde{A}_{1}}(x_{i})\otimes \mu _{\tilde{A}_{2}}(x_{i}))^{\lambda }=\{\langle \tau _{j},\)

\((\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j})\mu _{\mu _{\tilde{A}_{2}}(x_{i})}(\tau _{j}))^{\lambda }\rangle |\tau _{j}\in [0,1],\)

\((\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j})\mu _{\mu _{\tilde{A}_{2}}(x_{i})}(\tau _{j}))^{\lambda }\in [0,1]\}\}\).

Here, \((\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j}))^{\lambda }(\mu _{\mu _{\tilde{A}_{2}}(x_{i})}(\tau _{j}))^{\lambda }= (\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j})\)

\(\mu _{\mu _{\tilde{A}_{2}}(x_{i})}(\tau _{j}))^{\lambda }\), so \(\tilde{A}_{1}^{\lambda }\otimes \tilde{A}_{2}^{\lambda }=(\tilde{A}_{1}\otimes \tilde{A}_{2})^{\lambda }\).

(5) \(\lambda \tilde{A}_{1}\oplus \lambda \tilde{A}_{2}\)

\(=\{\langle x_{i},\lambda \mu _{\tilde{A}_{1}}(x_{i})\oplus \lambda \mu _{\tilde{A}_{2}}(x_{i})\rangle |x_{i}\in X,\lambda \mu _{\tilde{A}_{1}}(x_{i})\)

\(\oplus \lambda \mu _{\tilde{A}_{2}}(x_{i})=\{\langle \tau _{j}, 1-(1-\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j}))^{\lambda }\)

\((1-\mu _{\mu _{\tilde{A}_{2}}(x_{i})}(\tau _{j}))^{\lambda }\rangle |\tau _{j} \in [0,1],(1-(1-\)

\(\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j}))^{\lambda } (1-\mu _{\mu _{\tilde{A}_{2}}(x_{i})}(\tau _{j}))^{\lambda })\in [0,1]\}\}\),

\(\lambda (\tilde{A}_{1}\oplus \tilde{A}_{2})\)

\(=\{\langle x_{i},\lambda (\mu _{\tilde{A}_{1}}(x_{i})\oplus \mu _{\tilde{A}_{2}}(x_{i}))\rangle |x_{i} \in X,\lambda (\mu _{\tilde{A}_{1}}(x_{i})\)

\(\oplus \mu _{\tilde{A}_{2}}(x_{i}))=\{\langle \tau _{j},1-(1-\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j})-\)

\(\mu _{\mu _{\tilde{A}_{2}}(x_{i})}(\tau _{j})+\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j}) \mu _{\mu _{\tilde{A}_{2}}(x_{i})}(\tau _{j}))^{\lambda }\rangle\)

\(|\tau _{j}\in [0,1],(1-(1-\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j})-\mu _{\mu _{\tilde{A}_{2}}(x_{i})}(\tau _{j})\)

\(+\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j})\mu _{\mu _{\tilde{A}_{2}}(x_{i})}(\tau _{j}))^{\lambda })\in [0,1]\}\}\),

since \(1-(1-\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j}))^{\lambda }(1-\mu _{\mu _{\tilde{A}_{2}}(x_{i})}(\tau _{j}))^{\lambda }= 1-(1-\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j})-\mu _{\mu _{\tilde{A}_{2}}(x_{i})}(\tau _{j}) +\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j}) \mu _{\mu _{\tilde{A}_{2}}(x_{i})}(\tau _{j}))^{\lambda }\), so \(\lambda \tilde{A}_{1}\oplus \lambda \tilde{A}_{2}=\lambda (\tilde{A}_{1}\oplus \tilde{A}_{2})\).

Proof of Theorem 4

Proof

It is proved that (6), (8) and (10) in Theorem 4 hold, the rest (1)-(5), (7) and (9) can be proved similarly. Through Definitions 7 and 8, we can get

(6) \((\tilde{A}_{1}\cup \tilde{A}_{2})\otimes (\tilde{A}_{1}\cap \tilde{A}_{2})\)

\(=\{\langle x_{i},(\mu _{\tilde{A}_{1}}(x_{i})\cup \mu _{\tilde{A}_{2}}(x_{i}))\otimes (\mu _{\tilde{A}_{1}}(x_{i})\cap \mu _{\tilde{A}_{2}}(x_{i}))\rangle\)

\(|x_{i}\in X, (\mu _{\tilde{A}_{1}}(x_{i})\cup \mu _{\tilde{A}_{2}}(x_{i}))\otimes (\mu _{\tilde{A}_{1}}(x_{i})\cap\)

\(\mu _{\tilde{A}_{2}}(x_{i}))=\{\langle \tau _{j},\max (\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j}),\mu _{\mu _{\tilde{A}_{2}}(x_{i})}(\tau _{j}))\)

\(\min (\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j}),\mu _{\mu _{\tilde{A}_{2}}(x_{i})}(\tau _{j}))\rangle |\tau _{j}\in [0,1],\)

\(\max (\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j}),\mu _{\mu _{\tilde{A}_{2}}(x_{i})}(\tau _{j}))\)

\(\min (\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j}),\mu _{\mu _{\tilde{A}_{2}}(x_{i})}(\tau _{j}))\in [0,1]\}\}\),

and since

\(\max (\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j}),\mu _{\mu _{\tilde{A}_{2}}(x_{i})}(\tau _{j})) \min (\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j}),\)

\(\mu _{\mu _{\tilde{A}_{2}}(x_{i})}(\tau _{j}))=\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j}) \mu _{\mu _{\tilde{A}_{2}}(x_{i})}(\tau _{j})\),

so \((\tilde{A}_{1}\cup \tilde{A}_{2})\otimes (\tilde{A}_{1}\cap \tilde{A}_{2})=\tilde{A}_{1}\otimes \tilde{A}_{2}\).

(8) \((\tilde{A}_{1}\cap \tilde{A}_{2})\oplus \tilde{A}_{3}\)

\(=\{\langle x_{i},(\mu _{\tilde{A}_{1}}(x_{i})\cap \mu _{\tilde{A}_{2}}(x_{i}))\oplus \mu _{\tilde{A}_{3}}(x_{i})\rangle |x_{i}\in X,\)

\((\mu _{\tilde{A}_{1}}(x_{i})\cap \mu _{\tilde{A}_{2}}(x_{i}))\oplus \mu _{\tilde{A}_{3}}(x_{i})=\{\langle \tau _{j},\tilde{\mu }\rangle |\tau _{j}\)

\(\in [0,1],\tilde{\mu }\in [0,1]\}\}\),

where \(\tilde{\mu }=\min (\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j}),\mu _{\mu _{\tilde{A}_{2}}(x_{i})} (\tau _{j}))+\mu _{\mu _{\tilde{A}_{3}}(x_{i})}(\tau _{j})\)

\(-\min (\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j}), \mu _{\mu _{\tilde{A}_{2}}(x_{i})}(\tau _{j}))\mu _{\mu _{\tilde{A}_{3}}(x_{i})}(\tau _{j})\).

\((\tilde{A}_{1}\oplus \tilde{A}_{3})\cap (\tilde{A}_{2}\oplus \tilde{A}_{3})\)

\(=\{\langle x_{i},(\mu _{\tilde{A}_{1}}(x_{i})\oplus \mu _{\tilde{A}_{3}}(x_{i})) \cap (\mu _{\tilde{A}_{2}}(x_{i})\oplus \mu _{\tilde{A}_{3}}(x_{i}))\rangle\)

\(|x_{i}\in X, (\mu _{\tilde{A}_{1}}(x_{i})\oplus \mu _{\tilde{A}_{3}}(x_{i})) \cap (\mu _{\tilde{A}_{2}}(x_{i})\oplus\)

\(\mu _{\tilde{A}_{3}}(x_{i}))=\{\langle \tau _{j},\breve{\mu } \rangle |\tau _{j}\in [0,1],\breve{\mu }\in [0,1]\}\}\),

where \(\breve{\mu }=\min (\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j})+\mu _{\mu _{\tilde{A}_{3}}(x_{i})}(\tau _{j})- \mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j})\)

\(\mu _{\mu _{\tilde{A}_{3}}(x_{i})}(\tau _{j}),\mu _{\mu _{\tilde{A}_{2}}(x_{i})} (\tau _{j})+\mu _{\mu _{\tilde{A}_{3}}(x_{i})}(\tau _{j})- \mu _{\mu _{\tilde{A}_{2}}(x_{i})}(\tau _{j})\) \(\mu _{\mu _{\tilde{A}_{3}}(x_{i})}(\tau _{j}))\).

Since \(\tilde{\mu }=\breve{\mu }\), hence \((\tilde{A}_{1}\cap \tilde{A}_{2})\oplus \tilde{A}_{3}=(\tilde{A}_{1}\oplus \tilde{A}_{3})\cap (\tilde{A}_{2}\oplus \tilde{A}_{3})\).

(10) \((\tilde{A}_{1}\cap \tilde{A}_{2})\otimes \tilde{A}_{3}\)

\(=\{\langle x_{i},(\mu _{\tilde{A}_{1}}(x_{i})\cap \mu _{\tilde{A}_{2}}(x_{i}))\otimes \mu _{\tilde{A}_{3}}(x_{i})\rangle |x_{i}\in X,\)

\((\mu _{\tilde{A}_{1}}(x_{i})\cap \mu _{\tilde{A}_{2}}(x_{i}))\otimes \mu _{\tilde{A}_{3}}(x_{i})=\{\langle \tau _{j},\)

\(\min (\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j}),\mu _{\mu _{\tilde{A}_{2}}(x_{i})}(\tau _{j}))\mu _{\mu _{\tilde{A}_{3}}(x_{i})}(\tau _{j})\rangle |\tau _{j}\)

\(\in [0,1],\min (\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j}),\mu _{\mu _{\tilde{A}_{2}}(x_{i})}(\tau _{j}))\)

\(\mu _{\mu _{\tilde{A}_{3}}(x_{i})}(\tau _{j})\in [0,1]\}\}\),

\((\tilde{A}_{1}\otimes \tilde{A}_{3})\cap (\tilde{A}_{2}\otimes \tilde{A}_{3})\)

\(=\{\langle x_{i},(\mu _{\tilde{A}_{1}}(x_{i})\otimes \mu _{\tilde{A}_{3}}(x_{i}))\cap (\mu _{\tilde{A}_{2}}(x_{i})\otimes \mu _{\tilde{A}_{3}}(x_{i}))\rangle\)

\(|x_{i}\in X,(\mu _{\tilde{A}_{1}}(x_{i})\otimes \mu _{\tilde{A}_{3}}(x_{i}))\cap (\mu _{\tilde{A}_{2}}(x_{i})\otimes\)

\(\mu _{\tilde{A}_{3}}(x_{i}))=\{\langle \tau _{j},\min (\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j})\mu _{\mu _{\tilde{A}_{3}}(x_{i})}(\tau _{j}),\)

\(\mu _{\mu _{\tilde{A}_{2}}(x_{i})}(\tau _{j})\mu _{\mu _{\tilde{A}_{3}}(x_{i})}(\tau _{j}))\rangle |\tau _{j}\in [0,1],\)

\(\min (\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j})\mu _{\mu _{\tilde{A}_{3}}(x_{i})}(\tau _{j}),\)

\(\mu _{\mu _{\tilde{A}_{2}}(x_{i})}(\tau _{j})\mu _{\mu _{\tilde{A}_{3}}(x_{i})}(\tau _{j}))\in [0,1]\}\}\).

Since \(\min (\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j}),\mu _{\mu _{\tilde{A}_{2}}(x_{i})}(\tau _{j}))\mu _{\mu _{\tilde{A}_{3}}(x_{i})}(\tau _{j})= \min (\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j})\mu _{\mu _{\tilde{A}_{3}}(x_{i})}(\tau _{j}), \mu _{\mu _{\tilde{A}_{2}}(x_{i})}(\tau _{j})\mu _{\mu _{\tilde{A}_{3}}(x_{i})}(\tau _{j}))\),

hence \((\tilde{A}_{1}\cap \tilde{A}_{2})\otimes \tilde{A}_{3}=(\tilde{A}_{1}\otimes \tilde{A}_{3})\cap (\tilde{A}_{2}\otimes \tilde{A}_{3})\).

Proof of Theorem 6

Proof

Here, we provide the proof process of (2) and (4), (1) and (3) can be proved in a similar manner.

(2) If \(\tilde{A}_{1}\succeq \tilde{A}_{2}\), then \(S(\tilde{A}_{1})\ge S(\tilde{A}_{2})\), that is

\(\sum \limits ^{|X|}_{i=1}\sum \limits ^{|\mu _{\tilde{A}_{1}}(x_{i})|}_{j=1}\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j})\ge \sum \limits ^{|X|}_{i=1}\sum \limits ^{|\mu _{\tilde{A}_{2}}(x_{i})|}_{j=1}\mu _{\mu _{\tilde{A}_{2}}(x_{i})}(\tau _{j})\),

so there exists

\(\sum \limits ^{|X|}_{i=1}\sum \limits ^{|\mu _{\tilde{A}_{1}}(x_{i})|}_{j=1}(1-(1-\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j}))^{\lambda })\ge\)

\(\sum \limits ^{|X|}_{i=1}\sum \limits ^{|\mu _{\tilde{A}_{2}}(x_{i})|}_{j=1}(1-(1-\mu _{\mu _{\tilde{A}_{2}}(x_{i})}(\tau _{j}))^{\lambda })\),

i.e., \(\lambda \tilde{A}_{1}\succeq \lambda \tilde{A}_{2}\).

(4) If \(\tilde{A}_{1}\succeq \tilde{A}_{2}\), then \(S(\tilde{A}_{1})\ge S(\tilde{A}_{2})\), i.e.,

\(\sum \limits ^{|X|}_{i=1}\sum \limits ^{|\mu _{\tilde{A}_{1}}(x_{i})|}_{j=1}\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j})\ge \sum \limits ^{|X|}_{i=1}\sum \limits ^{|\mu _{\tilde{A}_{2}}(x_{i})|}_{j=1}\mu _{\mu _{\tilde{A}_{2}}(x_{i})}(\tau _{j})\),

hence we can obtain

\(\sum \limits ^{|X|}_{i=1}\sum \limits ^{|\mu _{\tilde{A}_{1}}(x_{i})|}_{j=1}(\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j})(1- \mu _{\mu _{\tilde{A}_{3}}(x_{i})}(\tau _{j}))+\)

\(\mu _{\mu _{\tilde{A}_{3}}(x_{i})}(\tau _{j}))\ge \sum \limits ^{|X|}_{i=1}\sum \limits ^{|\mu _{\tilde{A}_{2}}(x_{i})|}_{j=1}(\mu _{\mu _{\tilde{A}_{2}}(x_{i})}(\tau _{j})(1-\)

\(\mu _{\mu _{\tilde{A}_{3}}(x_{i})}(\tau _{j}))+\mu _{\mu _{\tilde{A}_{3}}(x_{i})}(\tau _{j}))\),

that is, \(\tilde{A}_{1}\oplus \tilde{A}_{3}\succeq \tilde{A}_{2}\oplus \tilde{A}_{3}\).

Proof of Theorem 7

Proof

Verifying that \(E(\tilde{A})=F(f(\tilde{A}(x_{1})),f(\tilde{A}(x_{2})),..., f(\tilde{A}(x_{n})))\) satisfies axioms (E1)-(E4) in Definition 11. For any \(\tilde{A}, \tilde{A}_{1},\tilde{A}_{2}\in T2FS(X)\), we can obtain

(E1) Since \(\mu _{\mu _{\tilde{A}}(x_{i})}(\tau _{j})\in [0,1]\), \(E(\tilde{A})=F(f(\tilde{A}(x_{1})), f(\tilde{A}(x_{2})),\ldots ,f(\tilde{A}(x_{n})))=0\Leftrightarrow f(\tilde{A}(x_{i}))=g(a_{i1},a_{i2}, \ldots ,a_{i|\tilde{A}(x_{i})|})=0\Leftrightarrow a_{ij}=|\mu _{\mu _{\tilde{A}}(x_{i})}(\tau _{j})-0.5|=0.5\), so \(\mu _{\mu _{\tilde{A}}(x_{i})}(\tau _{j})=0\) or \(\mu _{\mu _{\tilde{A}}(x_{i})}(\tau _{j})=1\).

(E2) Since \(\mu _{\mu _{\tilde{A}}(x_{i})}(\tau _{j})\in [0,1]\), \(E(\tilde{A})=F(f(\tilde{A}(x_{1})), f(\tilde{A}(x_{2})),\ldots ,f(\tilde{A}(x_{n})))=1\Leftrightarrow f(\tilde{A}(x_{i}))=g(a_{i1},a_{i2}, \ldots ,a_{i|\tilde{A}(x_{i})|})=1\Leftrightarrow a_{ij}=|\mu _{\mu _{\tilde{A}}(x_{i})}(\tau _{j})-0.5|=0\), hence \(\mu _{\mu _{\tilde{A}}(x_{i})}(\tau _{j})=0.5\).

(E3) Since \(\tilde{A}_{1}^{c}=\{\langle x_{i},(\mu _{\tilde{A}_{1}}(x_{i}))^{c}\rangle |x_{i}\in X,(\mu _{\tilde{A}_{1}}(x_{i}))^{c} =\{\langle \tau _{j},1-\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j})\rangle |\tau _{j}\in [0,1],(1-\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j}))\in [0,1]\}\}\), and \(a_{ij}=|1-\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j})-0.5|=|0.5-\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j})|\), thus, \(E(\tilde{A}_{1})=E(\tilde{A}_{1}^{c})\).

(E4) Because \(g(a_{i1},a_{i2},\ldots ,a_{i|\tilde{A}(x_{i})|})\) is strictly monotonically decreasing with respect to each \(a_{ij}(j=1,2,\ldots ,|\tilde{A}(x_{i})|)\), \(F(f(\tilde{A}(x_{1})),f(\tilde{A}(x_{2})),\ldots ,f(\tilde{A}(x_{n})))\) is strictly monotonically increasing with respect to each \(f(\tilde{A}(x_{i}))(i=1,2,\ldots ,n)\), when \(|\mu _{\mu _{\tilde{A}_{1}}(x_{i})}(\tau _{j})-0.5|\ge |\mu _{\mu _{\tilde{A}_{2}}(x_{i})}(\tau _{j})-0.5|\), then we can obtain \(f(\tilde{A}_{1}(x_{i}))\le f(\tilde{A}_{2}(x_{i}))\), and \(F(f(\tilde{A}_{1}(x_{1}),f(\tilde{A}_{1}(x_{2})),\ldots ,f(\tilde{A}_{1}(x_{n}))) \le F(f(\tilde{A}_{2}(x_{1})),f(\tilde{A}_{2}(x_{2})),\ldots ,f(\tilde{A}_{2}(x_{n})))\). Therefore, \(E(\tilde{A}_{1})\le E(\tilde{A}_{2})\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, TT., Qin, JD. A New Representation Method for Type-2 Fuzzy Sets and Its Application to Multiple Criteria Decision Making. Int. J. Fuzzy Syst. 25, 1171–1190 (2023). https://doi.org/10.1007/s40815-022-01432-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-022-01432-7

Keywords