Skip to main content
Log in

Fast Finite-Time Fuzzy Control for a Class of Nonstrict Feedback Systems with Input Quantization

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

In this research, a fast finite-time control scheme is proposed for nonstrict feedback systems with quantized input signals. It is known that nonstrict feedback form and input quantization are common problems caused by the complexity and performance requirements in practical systems. To deal with these difficulties, the obstacle generated by the nonstrict feedback structure is first solved by a fuzzy logic system (FLS) through the amazing characteristic of the Gaussian function. Second, a nonlinear decomposition method for the hysteretic quantizer is applied to simplify the procedures of controller design and stability analysis. Next, an adaptive controller is designed using backstepping theory, and a fast finite-time stability criterion is introduced to confirm its effectiveness and stability. Then, a given simulation example and a practical nonstrict feedback application about one-link manipulator are presented to demonstrate the effectiveness and feasibility of the proposed method. The simulation results illustrate that the proposed adaptive fuzzy controller ensures all the state variables are bounded and the tracking error converges to a small interval around zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wang, X., Ding, D., Dong, H., Zhang, X.-M.: Neural-network-based control for discrete-time nonlinear systems with input saturation under stochastic communication protocol. IEEE/CAA J. Autom. Sin. 8(4), 766–778 (2021). https://doi.org/10.1007/s40815-019-00648-4

    Article  MathSciNet  Google Scholar 

  2. Fang, Y., Fei, J., Cao, D.: Adaptive fuzzy-neural fractional-order current control of active power filter with finite-time sliding controller. Int. J. Fuzzy Syst. 21(5), 1533–1543 (2019). https://doi.org/10.1109/JAS.2021.1003922

    Article  MathSciNet  Google Scholar 

  3. Shi, X., Cheng, Y., Yin, C., Huang, X., Zhong, S.-M.: Design of adaptive backstepping dynamic surface control method with rbf neural network for uncertain nonlinear system. Neurocomputing 330, 490–503 (2019). https://doi.org/10.1016/j.neucom.2018.11.029

    Article  Google Scholar 

  4. Wang, Y., Zong, G., Yang, D., Shi, K.: Finite-time adaptive tracking control for a class of nonstrict feedback nonlinear systems with full state constraints. Int. J. Robust Nonlinear Control 32(5), 2551–2569 (2022). https://doi.org/10.1002/rnc.5777

    Article  MathSciNet  Google Scholar 

  5. Ma, L., Huo, X., Zhao, X., Zong, G.: Adaptive fuzzy tracking control for a class of uncertain switched nonlinear systems with multiple constraints: a small-gain approach. Int. J. Fuzzy Syst. 21(8), 2609–2624 (2019). https://doi.org/10.1007/s40815-019-00708-9

    Article  MathSciNet  Google Scholar 

  6. Sun, Y., Wang, F., Liu, Z., Zhang, Y., Chen, C.L.P.: Fixed-time fuzzy control for a class of nonlinear systems. IEEE Trans. Cybern. 52(5), 3880–3887 (2022). https://doi.org/10.1109/TCYB.2020.3018695

    Article  Google Scholar 

  7. Wang, H., Bai, W., Zhao, X., Liu, P.X.: Finite-time-prescribed performance-based adaptive fuzzy control for strict-feedback nonlinear systems with dynamic uncertainty and actuator faults. IEEE Trans. Cybern. 52(7), 1–13 (2021). https://doi.org/10.1109/TCYB.2020.304631

    Article  Google Scholar 

  8. Chang, W., Li, Y., Tong, S.: Adaptive fuzzy backstepping tracking control for flexible robotic manipulator. IEEE/CAA J. Autom. Sin. 8(12), 1923–1930 (2021). https://doi.org/10.1109/JAS.2017.7510886

    Article  MathSciNet  Google Scholar 

  9. Yang, W., Cui, G., Li, Z., Tao, C.: Fuzzy approximation-based adaptive finite-time tracking control for a quadrotor UAV with actuator faults. Int. J. Fuzzy Syst. (2022). https://doi.org/10.1007/s40815-022-01361-5

    Article  Google Scholar 

  10. Kanellakopoulos, I., Kokotovic, P.V., Morse, A.S.: A toolkit for nonlinear feedback design. Syst. Control Lett. 18(2), 83–92 (1992). https://doi.org/10.1016/0167-6911(92)90012-H

    Article  MathSciNet  MATH  Google Scholar 

  11. Qian, C., Lin, W.: Output feedback control of a class of nonlinear systems: a nonseparation principle paradigm. IEEE Trans. Autom. Control 47(10), 1710–1715 (2002). https://doi.org/10.1109/TAC.2002.803542

    Article  MathSciNet  MATH  Google Scholar 

  12. Yuan, Y., Zhao, J., Sun, Z.: Fast finite time stability of stochastic nonlinear systems. J. Frankl. Inst. 359(16), 9039–9055 (2022). https://doi.org/10.1016/j.jfranklin.2022.09.015

    Article  MathSciNet  MATH  Google Scholar 

  13. Long, J., Yu, D., Wen, G., Li, L., Chen, C.P.: Game-based backstepping design for strict-feedback nonlinear multi-agent systems based on reinforcement learning. IEEE Trans. Neural Netw. Learn. Syst. (2022). https://doi.org/10.1109/TNNLS.2022.3177461

    Article  Google Scholar 

  14. Yin, S., Yu, H., Shahnazi, R., Haghani, A.: Fuzzy adaptive tracking control of constrained nonlinear switched stochastic pure-feedback systems. IEEE Trans. Cybern. 47(3), 579–588 (2017). https://doi.org/10.1109/TCYB.2016.2521179

    Article  Google Scholar 

  15. Wang, W., Long, J., Zhou, J., Huang, J., Wen, C.: Adaptive backstepping based consensus tracking of uncertain nonlinear systems with event-triggered communication. Automatica 133, 109841 (2021). https://doi.org/10.1016/j.automatica.2021.109841

    Article  MathSciNet  MATH  Google Scholar 

  16. Wen, G., Chen, C.L.P., Ge, S.S.: Simplified optimized backstepping control for a class of nonlinear strict-feedback systems with unknown dynamic functions. IEEE Trans. Cybern. 51(9), 4567–4580 (2021). https://doi.org/10.1109/TCYB.2020.3002108

    Article  Google Scholar 

  17. Wang, M., Wang, Z., Dong, H., Han, Q.-L.: A novel framework for backstepping-based control of discrete-time strict-feedback nonlinear systems with multiplicative noises. IEEE Trans. Autom. Control 66(4), 1484–1496 (2021). https://doi.org/10.1109/TAC.2020.2995576

    Article  MathSciNet  MATH  Google Scholar 

  18. Sun, W., Yuan, W., Shao, Y., Sun, Z., Zhao, J., Sun, Q.: Adaptive fuzzy control of strict-feedback nonlinear time-delay systems with full-state constraints. Int. J. Fuzzy Syst. 20(8), 2556–2565 (2018). https://doi.org/10.1007/s40815-018-0545-9

    Article  MathSciNet  Google Scholar 

  19. Sun, W., Su, S.-F., Xia, J., Nguyen, V.-T.: Adaptive fuzzy tracking control of flexible-joint robots with full-state constraints. IEEE Trans. Syst. Man Cybern.: Syst. 49(11), 2201–2209 (2019). https://doi.org/10.1109/TSMC.2018.2870642

    Article  Google Scholar 

  20. Gao, M., Zhao, J., Zhuang, G., Sun, Z.: Finite-time state-feedback stabilization of high-order stochastic nonlinear systems with an asymmetric output constraint. Int. J. Adapt. Control Signal Process. 36(7), 1691–1701 (2022). https://doi.org/10.1002/acs.3421

    Article  MathSciNet  Google Scholar 

  21. Sun, W., Su, S.-F., Wu, Y., Xia, J., Nguyen, V.-T.: Adaptive fuzzy control with high-order barrier lyapunov functions for high-order uncertain nonlinear systems with full-state constraints. IEEE Trans. Cybern. 50(8), 3424–3432 (2019). https://doi.org/10.1109/TCYB.2018.2890256

    Article  Google Scholar 

  22. Sun, W., Su, S.-F., Liu, Z.-G., Sun, Z.-Y.: Adaptive intelligent control for input and output constrained high-order uncertain nonlinear systems. IEEE Trans. Syst. Man Cybern.: Syst. 51(9), 5577–5586 (2019). https://doi.org/10.1109/TSMC.2019.2956063

    Article  Google Scholar 

  23. Zhai, D., An, L., Dong, J., Zhang, Q.: Output feedback adaptive sensor failure compensation for a class of parametric strict feedback systems. Automatica 97, 48–57 (2018). https://doi.org/10.1016/j.automatica.2018.07.014

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhao, X., Shi, P., Zheng, X.: Fuzzy adaptive control design and discretization for a class of nonlinear uncertain systems. IEEE Trans. Cybern. 46(6), 1476–1483 (2016). https://doi.org/10.1109/TCYB.2015.2447153

    Article  Google Scholar 

  25. Patel, A., Kosko, B.: Noise benefits in quantizer-array correlation detection and watermark decoding. IEEE Trans. Signal Process. 59(2), 488–505 (2011). https://doi.org/10.1109/TSP.2010.2091409

    Article  MathSciNet  MATH  Google Scholar 

  26. Ren, P., Wang, F., Zhu, R.: Adaptive fixed-time fuzzy control of uncertain nonlinear quantized systems. Int. J. Fuzzy Syst. 23(3), 794–803 (2021). https://doi.org/10.1007/s40815-020-01018-1

    Article  Google Scholar 

  27. Shen, Y., Wu, Z.-G., Shi, P., Shu, Z., Karimi, H.R.: H\(\infty \) control of markov jump time-delay systems under asynchronous controller and quantizer. Automatica 99, 352–360 (2019). https://doi.org/10.1016/j.automatica.2018.10.056

    Article  MathSciNet  MATH  Google Scholar 

  28. Yu, D., Chen, C.P., Xu, H.: Intelligent decision making and bionic movement control of self-organized swarm. IEEE Trans. Ind. Electron. 68(7), 6369–6378 (2020). https://doi.org/10.1109/TIE.2020.2998748

    Article  Google Scholar 

  29. Xing, L., Wen, C., Zhu, Y., Su, H., Liu, Z.: Output feedback control for uncertain nonlinear systems with input quantization. Automatica 65, 191–202 (2016). https://doi.org/10.1016/j.automatica.2015.11.028

    Article  MathSciNet  MATH  Google Scholar 

  30. Tang, X., Zhai, D., Fu, Z., Wang, H.: Output feedback adaptive fuzzy control for uncertain fractional-order nonlinear switched system with output quantization. Int. J. Fuzzy Syst. 22(3), 943–955 (2020). https://doi.org/10.1007/s40815-020-00814-z

    Article  Google Scholar 

  31. Cheng, J., Shan, Y., Cao, J., Park, J.H.: Nonstationary control for T-S fuzzy Markovian switching systems with variable quantization density. IEEE Trans. Fuzzy Syst. 29(6), 1375–1385 (2021). https://doi.org/10.1109/TFUZZ.2020.2974440

    Article  Google Scholar 

  32. Zhu, G., Li, H., Zhang, X., Wang, C., Su, C.-Y., Hu, J.: Adaptive consensus quantized control for a class of high-order nonlinear multi-agent systems with input hysteresis and full state constraints. IEEE/CAA J. Autom. Sin. 9(9), 1574–1589 (2022). https://doi.org/10.1109/JAS.2022.105800

    Article  Google Scholar 

  33. Wang, Z., Yuan, J.: Full state constrained adaptive fuzzy control for stochastic nonlinear switched systems with input quantization. IEEE Trans. Fuzzy Syst. 28(4), 645–657 (2020). https://doi.org/10.1109/TFUZZ.2019.2912150

    Article  Google Scholar 

  34. Sun, Z.-Y., Zhang, K., Chen, C.-C., Zhao, Q.: Global output feedback stabilization for a class of nonlinear systems with multiple uncertainties. J. Frankl. Inst. 358(5), 2623–2641 (2021). https://doi.org/10.1016/j.jfranklin.2021.01.006

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhao, B., Liu, D., Alippi, C.: Sliding-mode surface-based approximate optimal control for uncertain nonlinear systems with asymptotically stable critic structure. IEEE Trans. Cybern. 51(6), 2858–2869 (2021). https://doi.org/10.1109/TCYB.2019.2962011

    Article  Google Scholar 

  36. Yu, D., Xu, H., Chen, C.P., Bai, W., Wang, Z.: Dynamic coverage control based on k-means. IEEE Trans. Ind. Electron. 69(5), 5333–5341 (2021). https://doi.org/10.1109/TIE.2021.3080205

    Article  Google Scholar 

  37. Yamashita, Y., Matsukizono, R., Kobayashi, K.: Asymptotic stabilization of nonlinear systems with convex-polytope input constraints by continuous input. Automatica 138, 110032 (2022). https://doi.org/10.1016/j.automatica.2021.110032

    Article  MathSciNet  MATH  Google Scholar 

  38. Lai, G., Zhang, Y., Liu, Z., Chen, C.L.P.: Indirect adaptive fuzzy control design with guaranteed tracking error performance for uncertain canonical nonlinear systems. IEEE Trans. Fuzzy Syst. 27(6), 1139–1150 (2019). https://doi.org/10.1109/TFUZZ.2018.2870574

    Article  Google Scholar 

  39. Bourahala, F., Guelton, K., Manamanni, N., Khaber, F.: Relaxed controller design conditions for Takagi-Sugeno systems with state time-varying delays. Int. J. Fuzzy Syst. 19(5), 1406–1416 (2017). https://doi.org/10.1007/s40815-016-0267-9

    Article  MathSciNet  Google Scholar 

  40. Su, X., Liu, Z., Zhang, Y., Philip Chen, C.L.: Event-triggered adaptive fuzzy tracking control for uncertain nonlinear systems preceded by unknown Prandtl-Ishlinskii hysteresis. IEEE Trans. Cybern. 51(6), 2979–2992 (2021). https://doi.org/10.1109/TCYB.2019.2949022

    Article  Google Scholar 

  41. Bhat, S.P., Bernstein, D.S.: Continuous finite-time stabilization of the translational and rotational double integrators. IEEE Trans. Autom. Control 43(5), 678–682 (1998). https://doi.org/10.1109/9.668834

    Article  MathSciNet  MATH  Google Scholar 

  42. Sun, Z.-Y., Xue, L.-R., Zhang, K.: A new approach to finite-time adaptive stabilization of high-order uncertain nonlinear system. Automatica 58, 60–66 (2015). https://doi.org/10.1016/j.automatica.2015.05.005

    Article  MathSciNet  MATH  Google Scholar 

  43. Xia, J., Li, B., Su, S.-F., Sun, W., Shen, H.: Finite-time command filtered event-triggered adaptive fuzzy tracking control for stochastic nonlinear systems. IEEE Trans. Fuzzy Syst. 29(7), 1815–1825 (2021). https://doi.org/10.1109/TFUZZ.2020.2985638

    Article  Google Scholar 

  44. Li, M., Wang, J.: Finite time stability of fractional delay differential equations. Appl. Math. Lett. 64, 170–176 (2017). https://doi.org/10.1016/j.aml.2016.09.004

    Article  MathSciNet  MATH  Google Scholar 

  45. Hu, T., He, Z., Zhang, X., Zhong, S.: Finite-time stability for fractional-order complex-valued neural networks with time delay. Appl. Math. Comput. (2020). https://doi.org/10.1016/j.amc.2019.124715

    Article  MathSciNet  MATH  Google Scholar 

  46. Du, F., Lu, J.-G.: Finite-time stability of neutral fractional order time delay systems with Lipschitz nonlinearities. Appl. Math. Comput. (2020). https://doi.org/10.1016/j.amc.2020.125079

    Article  MathSciNet  Google Scholar 

  47. Zhang, X., Wang, F., Zhang, L.: Finite time controller design of nonlinear quantized systems with nonstrict feedback form. Int. J. Control Autom. Syst. 17(1), 225–233 (2019). https://doi.org/10.1007/s12555-018-0297-1

    Article  Google Scholar 

  48. Lv, X., Li, X.: Finite time stability and controller design for nonlinear impulsive sampled-data systems with applications. ISA Trans. 70, 30–36 (2017). https://doi.org/10.1016/j.isatra.2017.07.025

    Article  Google Scholar 

  49. Sun, W., Li, J., Sun, W., Xia, J., Sun, Z.: Adaptive event-triggered global fast finite-time control for a class of uncertain nonlinear systems. Int. J. Robust Nonlinear Control 30(9), 3773–3785 (2020). https://doi.org/10.1002/rnc.4966

    Article  MathSciNet  MATH  Google Scholar 

  50. Zimenko, K., Efimov, D., Polyakov, A., Kremlev, A.: On necessary and sufficient conditions for output finite-time stability. Automatica (2021). https://doi.org/10.1016/j.automatica.2020.109427

    Article  MATH  Google Scholar 

  51. Chen, B., Lin, C.: Finite-time stabilization-based adaptive fuzzy control design. IEEE Trans. Fuzzy Syst. 29(8), 2438–2443 (2020). https://doi.org/10.1109/TFUZZ.2020.2991153

    Article  Google Scholar 

  52. Zhang, J., Niu, B., Wang, D., Wang, H., Duan, P., Zong, G.: Adaptive neural control of nonlinear nonstrict feedback systems with full-state constraints: a novel nonlinear mapping method. IEEE Trans. Neural Netw. Learn. Syst. (2021). https://doi.org/10.1109/TNNLS.2021.3104877

    Article  Google Scholar 

  53. Qian, C., Lin, W.: Non-Lipschitz continuous stabilizers for nonlinear systems with uncontrollable unstable linearization. Syst. Control Lett. 42(3), 185–200 (2001). https://doi.org/10.1016/S0167-6911(00)00089-X

    Article  MathSciNet  MATH  Google Scholar 

  54. Hardy, G.H., Littlewood, J.E., Pólya, G., Pólya, G., et al.: Inequalities. Cambridge University Press, Cambridge (1952)

    MATH  Google Scholar 

  55. Wang, L.-X., Mendel, J.M., et al.: Fuzzy basis functions, universal approximation, and orthogonal least-squares learning. IEEE Trans. Neural Netw. 3(5), 807–814 (1992)

    Article  Google Scholar 

  56. Zhou, J., Wen, C., Yang, G.: Adaptive backstepping stabilization of nonlinear uncertain systems with quantized input signal. IEEE Trans. Autom. Control 59(2), 460–464 (2013). https://doi.org/10.1109/TAC.2013.2270870

    Article  MathSciNet  MATH  Google Scholar 

  57. Liu, Z., Wang, F., Zhang, Y., Chen, C.P.: Fuzzy adaptive quantized control for a class of stochastic nonlinear uncertain systems. IEEE Trans. Cybern. 46(2), 524–534 (2015). https://doi.org/10.1109/TCYB.2015.2405616

    Article  Google Scholar 

  58. Sun, Y., Chen, B., Lin, C., Wang, H.: Finite-time adaptive control for a class of nonlinear systems with nonstrict feedback structure. IEEE Trans. Cybern. 48(10), 2774–2782 (2017). https://doi.org/10.1109/TCYB.2017.2749511

    Article  Google Scholar 

  59. Liu, Y., Zhu, Q.: Adaptive fuzzy finite-time control for nonstrict-feedback nonlinear systems. IEEE Trans. Cybern. 52(10), 10420–10429 (2021). https://doi.org/10.1109/TCYB.2021.3063139

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Zhishan Young Scholar Program of Southeast University and in part by the Fundamental Research Funds for the Central Universities under Grant 2242021R41118. Besides, we thank the Big Data Computing Center of Southeast University for providing the facility support on the numerical calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liping Xie.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Xie, L. & Zhang, K. Fast Finite-Time Fuzzy Control for a Class of Nonstrict Feedback Systems with Input Quantization. Int. J. Fuzzy Syst. 25, 1213–1226 (2023). https://doi.org/10.1007/s40815-022-01434-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-022-01434-5

Keywords

Navigation