Abstract
In this research, a fast finite-time control scheme is proposed for nonstrict feedback systems with quantized input signals. It is known that nonstrict feedback form and input quantization are common problems caused by the complexity and performance requirements in practical systems. To deal with these difficulties, the obstacle generated by the nonstrict feedback structure is first solved by a fuzzy logic system (FLS) through the amazing characteristic of the Gaussian function. Second, a nonlinear decomposition method for the hysteretic quantizer is applied to simplify the procedures of controller design and stability analysis. Next, an adaptive controller is designed using backstepping theory, and a fast finite-time stability criterion is introduced to confirm its effectiveness and stability. Then, a given simulation example and a practical nonstrict feedback application about one-link manipulator are presented to demonstrate the effectiveness and feasibility of the proposed method. The simulation results illustrate that the proposed adaptive fuzzy controller ensures all the state variables are bounded and the tracking error converges to a small interval around zero.




Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Wang, X., Ding, D., Dong, H., Zhang, X.-M.: Neural-network-based control for discrete-time nonlinear systems with input saturation under stochastic communication protocol. IEEE/CAA J. Autom. Sin. 8(4), 766–778 (2021). https://doi.org/10.1007/s40815-019-00648-4
Fang, Y., Fei, J., Cao, D.: Adaptive fuzzy-neural fractional-order current control of active power filter with finite-time sliding controller. Int. J. Fuzzy Syst. 21(5), 1533–1543 (2019). https://doi.org/10.1109/JAS.2021.1003922
Shi, X., Cheng, Y., Yin, C., Huang, X., Zhong, S.-M.: Design of adaptive backstepping dynamic surface control method with rbf neural network for uncertain nonlinear system. Neurocomputing 330, 490–503 (2019). https://doi.org/10.1016/j.neucom.2018.11.029
Wang, Y., Zong, G., Yang, D., Shi, K.: Finite-time adaptive tracking control for a class of nonstrict feedback nonlinear systems with full state constraints. Int. J. Robust Nonlinear Control 32(5), 2551–2569 (2022). https://doi.org/10.1002/rnc.5777
Ma, L., Huo, X., Zhao, X., Zong, G.: Adaptive fuzzy tracking control for a class of uncertain switched nonlinear systems with multiple constraints: a small-gain approach. Int. J. Fuzzy Syst. 21(8), 2609–2624 (2019). https://doi.org/10.1007/s40815-019-00708-9
Sun, Y., Wang, F., Liu, Z., Zhang, Y., Chen, C.L.P.: Fixed-time fuzzy control for a class of nonlinear systems. IEEE Trans. Cybern. 52(5), 3880–3887 (2022). https://doi.org/10.1109/TCYB.2020.3018695
Wang, H., Bai, W., Zhao, X., Liu, P.X.: Finite-time-prescribed performance-based adaptive fuzzy control for strict-feedback nonlinear systems with dynamic uncertainty and actuator faults. IEEE Trans. Cybern. 52(7), 1–13 (2021). https://doi.org/10.1109/TCYB.2020.304631
Chang, W., Li, Y., Tong, S.: Adaptive fuzzy backstepping tracking control for flexible robotic manipulator. IEEE/CAA J. Autom. Sin. 8(12), 1923–1930 (2021). https://doi.org/10.1109/JAS.2017.7510886
Yang, W., Cui, G., Li, Z., Tao, C.: Fuzzy approximation-based adaptive finite-time tracking control for a quadrotor UAV with actuator faults. Int. J. Fuzzy Syst. (2022). https://doi.org/10.1007/s40815-022-01361-5
Kanellakopoulos, I., Kokotovic, P.V., Morse, A.S.: A toolkit for nonlinear feedback design. Syst. Control Lett. 18(2), 83–92 (1992). https://doi.org/10.1016/0167-6911(92)90012-H
Qian, C., Lin, W.: Output feedback control of a class of nonlinear systems: a nonseparation principle paradigm. IEEE Trans. Autom. Control 47(10), 1710–1715 (2002). https://doi.org/10.1109/TAC.2002.803542
Yuan, Y., Zhao, J., Sun, Z.: Fast finite time stability of stochastic nonlinear systems. J. Frankl. Inst. 359(16), 9039–9055 (2022). https://doi.org/10.1016/j.jfranklin.2022.09.015
Long, J., Yu, D., Wen, G., Li, L., Chen, C.P.: Game-based backstepping design for strict-feedback nonlinear multi-agent systems based on reinforcement learning. IEEE Trans. Neural Netw. Learn. Syst. (2022). https://doi.org/10.1109/TNNLS.2022.3177461
Yin, S., Yu, H., Shahnazi, R., Haghani, A.: Fuzzy adaptive tracking control of constrained nonlinear switched stochastic pure-feedback systems. IEEE Trans. Cybern. 47(3), 579–588 (2017). https://doi.org/10.1109/TCYB.2016.2521179
Wang, W., Long, J., Zhou, J., Huang, J., Wen, C.: Adaptive backstepping based consensus tracking of uncertain nonlinear systems with event-triggered communication. Automatica 133, 109841 (2021). https://doi.org/10.1016/j.automatica.2021.109841
Wen, G., Chen, C.L.P., Ge, S.S.: Simplified optimized backstepping control for a class of nonlinear strict-feedback systems with unknown dynamic functions. IEEE Trans. Cybern. 51(9), 4567–4580 (2021). https://doi.org/10.1109/TCYB.2020.3002108
Wang, M., Wang, Z., Dong, H., Han, Q.-L.: A novel framework for backstepping-based control of discrete-time strict-feedback nonlinear systems with multiplicative noises. IEEE Trans. Autom. Control 66(4), 1484–1496 (2021). https://doi.org/10.1109/TAC.2020.2995576
Sun, W., Yuan, W., Shao, Y., Sun, Z., Zhao, J., Sun, Q.: Adaptive fuzzy control of strict-feedback nonlinear time-delay systems with full-state constraints. Int. J. Fuzzy Syst. 20(8), 2556–2565 (2018). https://doi.org/10.1007/s40815-018-0545-9
Sun, W., Su, S.-F., Xia, J., Nguyen, V.-T.: Adaptive fuzzy tracking control of flexible-joint robots with full-state constraints. IEEE Trans. Syst. Man Cybern.: Syst. 49(11), 2201–2209 (2019). https://doi.org/10.1109/TSMC.2018.2870642
Gao, M., Zhao, J., Zhuang, G., Sun, Z.: Finite-time state-feedback stabilization of high-order stochastic nonlinear systems with an asymmetric output constraint. Int. J. Adapt. Control Signal Process. 36(7), 1691–1701 (2022). https://doi.org/10.1002/acs.3421
Sun, W., Su, S.-F., Wu, Y., Xia, J., Nguyen, V.-T.: Adaptive fuzzy control with high-order barrier lyapunov functions for high-order uncertain nonlinear systems with full-state constraints. IEEE Trans. Cybern. 50(8), 3424–3432 (2019). https://doi.org/10.1109/TCYB.2018.2890256
Sun, W., Su, S.-F., Liu, Z.-G., Sun, Z.-Y.: Adaptive intelligent control for input and output constrained high-order uncertain nonlinear systems. IEEE Trans. Syst. Man Cybern.: Syst. 51(9), 5577–5586 (2019). https://doi.org/10.1109/TSMC.2019.2956063
Zhai, D., An, L., Dong, J., Zhang, Q.: Output feedback adaptive sensor failure compensation for a class of parametric strict feedback systems. Automatica 97, 48–57 (2018). https://doi.org/10.1016/j.automatica.2018.07.014
Zhao, X., Shi, P., Zheng, X.: Fuzzy adaptive control design and discretization for a class of nonlinear uncertain systems. IEEE Trans. Cybern. 46(6), 1476–1483 (2016). https://doi.org/10.1109/TCYB.2015.2447153
Patel, A., Kosko, B.: Noise benefits in quantizer-array correlation detection and watermark decoding. IEEE Trans. Signal Process. 59(2), 488–505 (2011). https://doi.org/10.1109/TSP.2010.2091409
Ren, P., Wang, F., Zhu, R.: Adaptive fixed-time fuzzy control of uncertain nonlinear quantized systems. Int. J. Fuzzy Syst. 23(3), 794–803 (2021). https://doi.org/10.1007/s40815-020-01018-1
Shen, Y., Wu, Z.-G., Shi, P., Shu, Z., Karimi, H.R.: H\(\infty \) control of markov jump time-delay systems under asynchronous controller and quantizer. Automatica 99, 352–360 (2019). https://doi.org/10.1016/j.automatica.2018.10.056
Yu, D., Chen, C.P., Xu, H.: Intelligent decision making and bionic movement control of self-organized swarm. IEEE Trans. Ind. Electron. 68(7), 6369–6378 (2020). https://doi.org/10.1109/TIE.2020.2998748
Xing, L., Wen, C., Zhu, Y., Su, H., Liu, Z.: Output feedback control for uncertain nonlinear systems with input quantization. Automatica 65, 191–202 (2016). https://doi.org/10.1016/j.automatica.2015.11.028
Tang, X., Zhai, D., Fu, Z., Wang, H.: Output feedback adaptive fuzzy control for uncertain fractional-order nonlinear switched system with output quantization. Int. J. Fuzzy Syst. 22(3), 943–955 (2020). https://doi.org/10.1007/s40815-020-00814-z
Cheng, J., Shan, Y., Cao, J., Park, J.H.: Nonstationary control for T-S fuzzy Markovian switching systems with variable quantization density. IEEE Trans. Fuzzy Syst. 29(6), 1375–1385 (2021). https://doi.org/10.1109/TFUZZ.2020.2974440
Zhu, G., Li, H., Zhang, X., Wang, C., Su, C.-Y., Hu, J.: Adaptive consensus quantized control for a class of high-order nonlinear multi-agent systems with input hysteresis and full state constraints. IEEE/CAA J. Autom. Sin. 9(9), 1574–1589 (2022). https://doi.org/10.1109/JAS.2022.105800
Wang, Z., Yuan, J.: Full state constrained adaptive fuzzy control for stochastic nonlinear switched systems with input quantization. IEEE Trans. Fuzzy Syst. 28(4), 645–657 (2020). https://doi.org/10.1109/TFUZZ.2019.2912150
Sun, Z.-Y., Zhang, K., Chen, C.-C., Zhao, Q.: Global output feedback stabilization for a class of nonlinear systems with multiple uncertainties. J. Frankl. Inst. 358(5), 2623–2641 (2021). https://doi.org/10.1016/j.jfranklin.2021.01.006
Zhao, B., Liu, D., Alippi, C.: Sliding-mode surface-based approximate optimal control for uncertain nonlinear systems with asymptotically stable critic structure. IEEE Trans. Cybern. 51(6), 2858–2869 (2021). https://doi.org/10.1109/TCYB.2019.2962011
Yu, D., Xu, H., Chen, C.P., Bai, W., Wang, Z.: Dynamic coverage control based on k-means. IEEE Trans. Ind. Electron. 69(5), 5333–5341 (2021). https://doi.org/10.1109/TIE.2021.3080205
Yamashita, Y., Matsukizono, R., Kobayashi, K.: Asymptotic stabilization of nonlinear systems with convex-polytope input constraints by continuous input. Automatica 138, 110032 (2022). https://doi.org/10.1016/j.automatica.2021.110032
Lai, G., Zhang, Y., Liu, Z., Chen, C.L.P.: Indirect adaptive fuzzy control design with guaranteed tracking error performance for uncertain canonical nonlinear systems. IEEE Trans. Fuzzy Syst. 27(6), 1139–1150 (2019). https://doi.org/10.1109/TFUZZ.2018.2870574
Bourahala, F., Guelton, K., Manamanni, N., Khaber, F.: Relaxed controller design conditions for Takagi-Sugeno systems with state time-varying delays. Int. J. Fuzzy Syst. 19(5), 1406–1416 (2017). https://doi.org/10.1007/s40815-016-0267-9
Su, X., Liu, Z., Zhang, Y., Philip Chen, C.L.: Event-triggered adaptive fuzzy tracking control for uncertain nonlinear systems preceded by unknown Prandtl-Ishlinskii hysteresis. IEEE Trans. Cybern. 51(6), 2979–2992 (2021). https://doi.org/10.1109/TCYB.2019.2949022
Bhat, S.P., Bernstein, D.S.: Continuous finite-time stabilization of the translational and rotational double integrators. IEEE Trans. Autom. Control 43(5), 678–682 (1998). https://doi.org/10.1109/9.668834
Sun, Z.-Y., Xue, L.-R., Zhang, K.: A new approach to finite-time adaptive stabilization of high-order uncertain nonlinear system. Automatica 58, 60–66 (2015). https://doi.org/10.1016/j.automatica.2015.05.005
Xia, J., Li, B., Su, S.-F., Sun, W., Shen, H.: Finite-time command filtered event-triggered adaptive fuzzy tracking control for stochastic nonlinear systems. IEEE Trans. Fuzzy Syst. 29(7), 1815–1825 (2021). https://doi.org/10.1109/TFUZZ.2020.2985638
Li, M., Wang, J.: Finite time stability of fractional delay differential equations. Appl. Math. Lett. 64, 170–176 (2017). https://doi.org/10.1016/j.aml.2016.09.004
Hu, T., He, Z., Zhang, X., Zhong, S.: Finite-time stability for fractional-order complex-valued neural networks with time delay. Appl. Math. Comput. (2020). https://doi.org/10.1016/j.amc.2019.124715
Du, F., Lu, J.-G.: Finite-time stability of neutral fractional order time delay systems with Lipschitz nonlinearities. Appl. Math. Comput. (2020). https://doi.org/10.1016/j.amc.2020.125079
Zhang, X., Wang, F., Zhang, L.: Finite time controller design of nonlinear quantized systems with nonstrict feedback form. Int. J. Control Autom. Syst. 17(1), 225–233 (2019). https://doi.org/10.1007/s12555-018-0297-1
Lv, X., Li, X.: Finite time stability and controller design for nonlinear impulsive sampled-data systems with applications. ISA Trans. 70, 30–36 (2017). https://doi.org/10.1016/j.isatra.2017.07.025
Sun, W., Li, J., Sun, W., Xia, J., Sun, Z.: Adaptive event-triggered global fast finite-time control for a class of uncertain nonlinear systems. Int. J. Robust Nonlinear Control 30(9), 3773–3785 (2020). https://doi.org/10.1002/rnc.4966
Zimenko, K., Efimov, D., Polyakov, A., Kremlev, A.: On necessary and sufficient conditions for output finite-time stability. Automatica (2021). https://doi.org/10.1016/j.automatica.2020.109427
Chen, B., Lin, C.: Finite-time stabilization-based adaptive fuzzy control design. IEEE Trans. Fuzzy Syst. 29(8), 2438–2443 (2020). https://doi.org/10.1109/TFUZZ.2020.2991153
Zhang, J., Niu, B., Wang, D., Wang, H., Duan, P., Zong, G.: Adaptive neural control of nonlinear nonstrict feedback systems with full-state constraints: a novel nonlinear mapping method. IEEE Trans. Neural Netw. Learn. Syst. (2021). https://doi.org/10.1109/TNNLS.2021.3104877
Qian, C., Lin, W.: Non-Lipschitz continuous stabilizers for nonlinear systems with uncontrollable unstable linearization. Syst. Control Lett. 42(3), 185–200 (2001). https://doi.org/10.1016/S0167-6911(00)00089-X
Hardy, G.H., Littlewood, J.E., Pólya, G., Pólya, G., et al.: Inequalities. Cambridge University Press, Cambridge (1952)
Wang, L.-X., Mendel, J.M., et al.: Fuzzy basis functions, universal approximation, and orthogonal least-squares learning. IEEE Trans. Neural Netw. 3(5), 807–814 (1992)
Zhou, J., Wen, C., Yang, G.: Adaptive backstepping stabilization of nonlinear uncertain systems with quantized input signal. IEEE Trans. Autom. Control 59(2), 460–464 (2013). https://doi.org/10.1109/TAC.2013.2270870
Liu, Z., Wang, F., Zhang, Y., Chen, C.P.: Fuzzy adaptive quantized control for a class of stochastic nonlinear uncertain systems. IEEE Trans. Cybern. 46(2), 524–534 (2015). https://doi.org/10.1109/TCYB.2015.2405616
Sun, Y., Chen, B., Lin, C., Wang, H.: Finite-time adaptive control for a class of nonlinear systems with nonstrict feedback structure. IEEE Trans. Cybern. 48(10), 2774–2782 (2017). https://doi.org/10.1109/TCYB.2017.2749511
Liu, Y., Zhu, Q.: Adaptive fuzzy finite-time control for nonstrict-feedback nonlinear systems. IEEE Trans. Cybern. 52(10), 10420–10429 (2021). https://doi.org/10.1109/TCYB.2021.3063139
Acknowledgements
This work was supported in part by the Zhishan Young Scholar Program of Southeast University and in part by the Fundamental Research Funds for the Central Universities under Grant 2242021R41118. Besides, we thank the Big Data Computing Center of Southeast University for providing the facility support on the numerical calculations.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zhang, Y., Xie, L. & Zhang, K. Fast Finite-Time Fuzzy Control for a Class of Nonstrict Feedback Systems with Input Quantization. Int. J. Fuzzy Syst. 25, 1213–1226 (2023). https://doi.org/10.1007/s40815-022-01434-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40815-022-01434-5