Skip to main content

Advertisement

Log in

Observer-Based Robust Adaptive TS Fuzzy Control of Uncertain Systems with High-Order Input Derivatives and Nonlinear Input–Output Relationships

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

The conventional state-space form often leads to control design strategies and stability analysis techniques generally applicable to dynamical processes. Nevertheless, it may also lead to higher model complexity and loss of interpretability. Here, we skip this representation for nonlinear dynamical systems with high-order input derivatives and nonlinear input–output relationships. Specifically, we incorporate the principle of \({H}_{\infty }\) design within an observer-based adaptive fuzzy controller to guarantee robust stabilization and trajectory tracking for such nonlinear systems. The proposed approach has four integral components. Firstly, zero-order Takagi–Sugeno fuzzy systems approximate nonlinear and uncertain functions by the estimated states of the observer. Secondly, the \({H}_{\infty }\) control attenuates fuzzy approximation errors, observer errors, and environmental effects to a prescribed attenuation level. Thirdly, the adaptive laws and the \({H}_{\infty }\) term are met with simple equations, avoiding the positive definite matrices in Lyapunov equations. Fourthly, a compensation term is added to ensure the stability of the closed-loop system. Fifthly, the Lyapunov theory guarantees the asymptotic stability of the overall system and the \({H}_{\infty }\) tracking performance of the output. Finally, the proposed method is applied to two unknown nonlinear systems under disturbances, noises, packet loss, and asymmetric dead-zone. The first is a second-order spring-mass-damper trolley system, and the second is a third-order nonlinear system. Comparing the results with a recent competing controller reveals that the proposed approach improves transparency and lowers tunable parameters, fuzzy basis functions dimension, the observation and tracking errors, the consumed energies, and the settling times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Fliess, M., Levine, J., Martin, Ph., Rouchon, P.: Flatness and defect of non-linear systems: introductory theory and examples. Int. J. Control 61(6), 1327–1361 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen Y-Y., Gieng S-T., Liao W-Y., Huang T-Ch.: Micrometer level control design of piezoelectric actuators: Fuzzy approach. Int. J. Fuzzy Syst. 08 (2021)

  3. Shafai B., Moradmand A., Nazari S.: Observer-based controller design for systems with derivative inputs. In: 2019 57th Annu. Allerton Conf. Commun. Control Comput., pp. 1038–1044 (2019)

  4. Darrell, W.: Observation of bilinear systems with application to biological control. Automatica 13(3), 243–254 (1977)

    Article  MATH  Google Scholar 

  5. Freedman, M., Willems, J.: Smooth representation of systems with differentiated inputs. IEEE Trans. Autom. Control 23(1), 16–21 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  6. Glad S.T.: Nonlinear state space and input output descriptions using differential polynomials. In: New Trends in Nonlinear Control Theory, pp. 182–189. Berlin (1989)

  7. Zhang, F., Hua, J., Li, Y.: Indirect adaptive fuzzy control of siso nonlinear systems with input-output nonlinear relationship. IEEE Trans. Fuzzy Syst. 26(5), 2699–2708 (2018)

    Article  Google Scholar 

  8. Zhang, F., Li, Y., Hua, J.: Direct adaptive fuzzy control of siso nonlinear systems with input-output nonlinear relationship. Int. J. Fuzzy Syst. 20, 11 (2017)

    MathSciNet  Google Scholar 

  9. Zhang, F., Chen, Y.Y.: Indirect adaptive fuzzy control for nonaffine nonlinear pure-feedback systems. IEEE Trans. Fuzzy Syst. 28(11), 2918–2929 (2020)

    Article  Google Scholar 

  10. Zhang, F., Chen, Y.-Y.: Indirect adaptive fuzzy control with a new control input transformation. IFAC-PapersOnLine 55(3), 184–189 (2022)

    Article  Google Scholar 

  11. Wang, L.-X., Mendel, J.M.: Fuzzy basis functions, universal approximation, and orthogonal least-squares learning. IEEE Trans. Neural Netw. 3(5), 807–814 (1992)

    Article  Google Scholar 

  12. Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man-Mach. Stud. 7(1), 1–13 (1975)

    Article  MATH  Google Scholar 

  13. Wang, L.-X.: A Course in Fuzzy Systems and Control. Prentice-Hall Inc, New York (1996)

    Google Scholar 

  14. Golea, N., Golea, A., Benmahammed, K.: Stable indirect fuzzy adaptive control. Fuzzy Sets Syst. 137(3), 353–366 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhu, Z., Pan, Y., Zhou, Q., Lu, C.: Event-triggered adaptive fuzzy control for stochastic nonlinear systems with unmeasured states and unknown backlash-like hysteresis. IEEE Trans. Fuzzy Syst. 29(5), 1273–1283 (2020)

    Article  Google Scholar 

  16. Liang, M., Chang, Y., Zhang, F., Wang, Sh., Wang, Ch., Lu, Sh., Wang, Y.: Observer-based adaptive fuzzy output feedback control for a class of fractional-order nonlinear systems with full-state constraints. Int. J. Fuzzy Syst. 24, 1046–1058 (2022)

    Article  Google Scholar 

  17. Du, P., Pan, Y., Li, H., Lam, H.: Nonsingular finite-time event-triggered fuzzy control for large-scale nonlinear systems. IEEE Trans. Fuzzy Syst. 29(8), 2088–2099 (2020)

    Article  Google Scholar 

  18. Li, Y., Qu, F., Tong, S.: Observer-based fuzzy adaptive finite-time containment control of nonlinear multiagent systems with input delay. IEEE Trans. Cybern. 51(1), 126–137 (2020)

    Article  Google Scholar 

  19. Du, P., Sun, K., Zhao, S., Liang, H.: Observer-based adaptive fuzzy control for time-varying state constrained strict-feedback nonlinear systems with dead-zone. Int. J. Fuzzy Syst. 21, 12 (2018)

    MathSciNet  Google Scholar 

  20. Su, H., Zhang, W.: Finite-time tracking control for a class of mimo nonstrict-feedback nonlinear systems via adaptive fuzzy method. Int. J. Fuzzy Syst. 24, 713–727 (2022)

    Article  Google Scholar 

  21. Jiang, S., Tian, F.Q., Sun, S.Y., Liang, W.G.: Integrated guidance and control of guided projectile with multiple constraints based on fuzzy adaptive and dynamic surface. Def. Technol. 16(6), 1130–1141 (2020)

    Article  Google Scholar 

  22. Sun, X., Zhang, Q.: Observer-based adaptive sliding mode control for t-s fuzzy singular systems. IEEE Trans. Syst. Man Cybern. Syst. 50(11), 4438–4446 (2020)

    Article  Google Scholar 

  23. Cheng, W., Xue, H., Liang, H., et al.: Prescribed performance adaptive fuzzy control of stochastic nonlinear multi-agent systems with input hysteresis and saturation. Int. J. Fuzzy Syst. 24, 91–104 (2022)

    Article  Google Scholar 

  24. Li, H., Sun, H., Hou, L.: Adaptive fuzzy pi output feedback control for a class of switched nonlinear systems with unmodeled dynamics and dead-zone output. Int. J. Fuzzy Syst. 24, 728–751 (2022)

    Article  Google Scholar 

  25. Song X., Sun P., Song S., et al.: Event-triggered fuzzy adaptive fixed-time output-feedback control for nonlinear systems with multiple objective constraints. Int. J. Fuzzy Syst. (2022)

  26. Li G., Yang R.: Observer-based hybrid-triggered control for nonlinear networked control systems with disturbances. Int. J. Fuzzy Syst. (2022)

  27. Xie, L.: Output feedback \(h_\infty\) control of systems with parameter uncertainty. Int. J. Control 63(4), 741–750 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. Chen, B.S., Lee, C.H., Chang, Y.C.: \(\text{ H}_\infty\) tracking design of uncertain nonlinear siso systems: adaptive fuzzy approach. IEEE Trans. Fuzzy Syst. 4(1), 32–43 (1996)

    Article  Google Scholar 

  29. Pan, Y., Er, M.J., Sun, T., Xu, B., Yu, H.: Adaptive fuzzy pd control with stable \(\text{ h}_\infty\) tracking guarantee. Neurocomputing 237, 71–78 (2017)

    Article  Google Scholar 

  30. Fallah-Gh, H., Kalat, A.: Observer-based robust composite adaptive fuzzy control by uncertainty estimation for a class of nonlinear systems. Neurocomputing 230, 100–109 (2017)

    Article  Google Scholar 

  31. Baghbani, F., Akbarzadeh-T, M.-R., Akbarzadeh, A.: Indirect adaptive robust mixed \(\text{ h}_2\)/\(\text{ h}_\infty\) general type-2 fuzzy control of uncertain nonlinear systems. Appl. Soft Comput. 72, 392–418 (2018)

    Article  Google Scholar 

  32. Xuhuan, X., Shanbin, L., Bugong, X.: Adaptive event-triggered \(\text{ h}_\infty\) fuzzy filtering for interval type-2 ts fuzzy-model-based networked control systems with asynchronously and imperfectly matched membership functions. J. Franklin Inst. 356(18), 11760–11791 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  33. Fallah-Gh, H.: A modeling error-based adaptive fuzzy observer approach with input saturation analysis for robust control of affine and non-affine systems. Soft Comput. 24, 02 (2020)

    Google Scholar 

  34. Fallah-G. H., Akbarzadeh Kalat, A.: Observer-based hybrid adaptive fuzzy control for affine and nonaffine uncertain nonlinear systems. Neural. Comput. Appl. 30, 08 (2018)

  35. Tong, S., Li, H.X., Wang, W.: Observer-based adaptive fuzzy control for siso nonlinear systems. Fuzzy Sets Syst. 148(3), 355–376 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  36. Dong, Sh., Tang, Zh., Yang, X., Wu, M., Zhang, J., Zhu, T., Xiao, Sh.: Nonlinear spring-mass-damper modeling and parameter estimation of train frontal crash using clgan model. Shock Vib. 2020, 08 (2020)

    Google Scholar 

  37. Mull J-F., Durand C., Baudouin C., Bigot R.: A fe billet model and a spring-mass-damper model for the simulation of dynamic forging process: application to a screw press. In: Forming the Future, pp. 1131–1143 (2021)

  38. Laurentiu, M., Agathoklis, G.: Optimal design of a novel tuned mass-damper-inerter (tmdi) passive vibration control configuration for stochastically support-excited structural systems. Probab. Eng. Mech. 38, 03 (2014)

    Google Scholar 

  39. Ahmadi, E., Caprani, C., Živanović, S., Heidarpour, A.: Experimental validation of moving spring-mass-damper model for human-structure interaction in the presence of vertical vibration. Structures 29, 1274–1285 (2021)

    Article  Google Scholar 

  40. Wang, H., Chen, J., Nagayama, T.: Parameter identification of spring-mass-damper model for bouncing people. J. Sound Vib. 456, 13–29 (2019)

    Article  Google Scholar 

  41. Zhang, L., Yang, G.: Low-computation adaptive fuzzy tracking control for nonlinear systems via switching-type adaptive laws. IEEE Trans. Fuzzy Syst. 27(10), 1931–1942 (2019)

    Article  Google Scholar 

  42. Wu, C., Liu, J., Jing, X., Li, H., Wu, L.: Adaptive fuzzy control for nonlinear networked control systems. IEEE Trans. Syst. Man Cybern. Syst. 47(8), 2420–2430 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad-R. Akbarzadeh-T.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassani, M., Akbarzadeh-T, MR. Observer-Based Robust Adaptive TS Fuzzy Control of Uncertain Systems with High-Order Input Derivatives and Nonlinear Input–Output Relationships. Int. J. Fuzzy Syst. 25, 1400–1413 (2023). https://doi.org/10.1007/s40815-022-01438-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-022-01438-1

Keywords