Skip to main content

Advertisement

Log in

Application of Interval Type-2 Fuzzy Logic System and Ant Colony Optimization for Hydropower Dams Displacement Forecasting

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Forecasting the dam displacement is an important problem in dam monitoring. By using multi-temporal monitoring data to make predictions and forecast dam structure health, it is possible to detect abnormalities over time of the dam so that remedial measures can be taken promptly to minimize risks. The paper proposes a method of applying the interval type-2 fuzzy logic system (IT2FLS) and ant colony optimization (ACO) technique to forecast hydroelectric dams’ displacement. The method consists of two stages: The first is to design an IT2FLS according to the input and output data with base rules and newly constructed membership functions. The second is to find the optimal parameters for an interval type-2 fuzzy logic system based on the ACO technique and give the final fuzzy forecasting system. Experimental data are measured from hydroelectricity monitoring data of Ialy, Gia Lai Province, Vietnam, in the period from 2004 to 2016. The proposed method is compared with some other methods to compare prediction efficiency and accuracy. The experimental results show that the proposed model has the best performance compared to other standard methods in both accuracy and stability of prediction. This shows that a predictive model based on the IT2FLS is a promising method and can be used for forecasting time-series data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Li, Y., Bao, T., Gong, J., Shu, X., Zhang, K.: The prediction of dam displacement time series using STL, extra-trees, and stacked LSTM neural network. IEEE Access 8, 94440–94452 (2020). https://doi.org/10.1109/ACCESS.2020.2995592

    Article  Google Scholar 

  2. Tabari, M.M.R., Sanayei, H.R.Z.: Prediction of the intermediate block displacement of the dam crest using artificial neural network and support vector the regression models. Soft Comput. 23, 9629–9645 (2019). https://doi.org/10.1007/s00500-018-3528-8

    Article  Google Scholar 

  3. Shao, C., Gu, C., Yang, M., Xu, Y., Su, H.: A novel model of dam displacement based on panel data. Struct. Control Health Monit. 25(1), e2037 (2017). https://doi.org/10.1002/stc.2037

    Article  Google Scholar 

  4. Wei, B., Chen, L., Li, H., Yuan, D., Wang, G.: Optimized prediction model for concrete dam displacement based on signal residual amendment. Appl. Math. Model. 78, 20–36 (2020). ISSN 0307-904X. https://doi.org/10.1016/j.apm.2019.09.046

  5. Zhang, J.-H., Wang, J., Chai, L.-S.: Factors influencing hysteresis characteristics of concrete dam deformation. Water Sci. Eng. 10(2), 166–174 (2017). https://doi.org/10.1016/j.wse.2017.03.007

    Article  Google Scholar 

  6. He, Q., Gu, C., Valente, S., et al.: Multi-arch dam safety evaluation based on statistical analysis and numerical simulation. Nat./Sci. Rep. 12, 8913 (2022). https://doi.org/10.1038/s41598-022-13073-9

    Article  Google Scholar 

  7. Zou, J., Thi Bui, K.-T., Xiao, Y., Van Doan, C.: Dam deformation analysis based on BPNN merging models. Geospat. Inf. Sci. 21(2), 149–157 (2018). https://doi.org/10.1080/10095020.2017.1386848

    Article  Google Scholar 

  8. Bui, K.-T.T., Tien Bui, D., Zou, J., Van Doan, C., Revhaug, I.: A novel hybrid artificial intelligent approach based on neural fuzzy inference model and particle swarm optimization for horizontal displacement modeling of hydropower dam. Neural Comput. Appl. 29(12), 1495–1506 (2018). https://doi.org/10.1007/s00521-016-2666-0

    Article  Google Scholar 

  9. Zanaganeh, M., Mousavi, S.J., Shahidi, A.F.E.: A hybrid genetic algorithm-adaptive network-based fuzzy inference system in prediction of wave parameters. Eng. Appl. Artif. Intell. 22, 1194–1202 (2009). https://doi.org/10.1016/j.engappai.2009.04.009

    Article  Google Scholar 

  10. Yang, L.-H., Ye, F.-F., Liu, J., Wang, Y.-M., Haibo, H.: An improved fuzzy rule-based system using evidential reasoning and subtractive clustering for environmental investment prediction. Fuzzy Sets Syst. (2021). https://doi.org/10.1016/j.fss.2021.02.018

    Article  MathSciNet  Google Scholar 

  11. Mendel, J.: Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions, 2nd edn. Springer, Cham (2017)

    Book  MATH  Google Scholar 

  12. Khosravi, A.: An interval type-2 fuzzy logic system-based method for prediction interval construction. Appl. Soft Comput. 24, 222–231 (2014). https://doi.org/10.1016/j.asoc.2014.06.039

    Article  Google Scholar 

  13. Mendel, J.M., John, R.I., Liu, F.: Interval type-2 fuzzy logic systems made simple. IEEE Trans. Fuzzy Syst. 14(6), 808–821 (2006). https://doi.org/10.1109/TFUZZ.2006.879986

    Article  Google Scholar 

  14. Mai, D.S., Dang, T.H., Ngo, L.T.: Optimization of interval type-2 fuzzy system using the PSO technique for predictive problems. J. Inf. Telecommun. 5(2), 197–213 (2021). https://doi.org/10.1080/24751839.2020.1833141

    Article  Google Scholar 

  15. Mai, D.S., Ngo, L.T., Trinh, L.H., Hagras, H.: A hybrid interval type-2 semi-supervised possibilistic fuzzy c-means clustering and particle swarm optimization for satellite image analysis. Inf. Sci. 548, 398–422 (2021). https://doi.org/10.1016/j.ins.2020.10.003

    Article  MathSciNet  Google Scholar 

  16. Jiang, J.-A., Syue, C.-H., Wang, C.-H., Wang, J.-C., Shieh, J.-S.: An interval type-2 fuzzy logic system for stock index forecasting based on fuzzy time series and a fuzzy logical relationship map. IEEE Access (2018). https://doi.org/10.1109/ACCESS.2018.2879962

    Article  Google Scholar 

  17. Jallal, M.A., González-Vidal, A., Skarmeta, A.F., Chabaa, S., Zeroual, A.: A hybrid neuro-fuzzy inference system-based algorithm for time series forecasting applied to energy consumption prediction. Appl. Energy 268, 114977 (2020). https://doi.org/10.1016/j.apenergy.2020.114977

    Article  Google Scholar 

  18. Tu, C.-H., Li, C.: Multitarget prediction using an aim-object-based asymmetric neuro-fuzzy system: a novel approach. Neurocomputing 389, 155–169 (2020). https://doi.org/10.1016/j.neucom.2019.12.113

    Article  Google Scholar 

  19. Rathnayake, N., Dang, T.L., Hoshino, Y.: A novel optimization algorithm: cascaded adaptive neuro-fuzzy inference system. Int. J. Fuzzy Syst. (2021). https://doi.org/10.1007/s40815-021-01076-z

    Article  Google Scholar 

  20. Tsakiridis, N.L., Theocharis, J.B., Panagos, P., et al.: An evolutionary fuzzy rule-based system applied to the prediction of soil organic carbon from soil spectral libraries. Appl. Soft Comput. (2019). https://doi.org/10.1016/j.asoc.2019.105504

    Article  Google Scholar 

  21. Karnik, N., Mendel, J., Liang, Q.: Type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 7(6), 643–658 (1999). https://doi.org/10.1109/91.811231

    Article  Google Scholar 

  22. Liang, Q., Mendel, J.: Interval type-2 fuzzy logic systems: theory and design. IEEE Trans. Fuzzy Syst. 8(5), 535–550 (2000). https://doi.org/10.1109/91.873577

    Article  Google Scholar 

  23. Siminski, K.: Interval type-2 neuro-fuzzy system with implication-based inference mechanism. Expert Syst. Appl. 79, 140–152 (2017). https://doi.org/10.1016/j.eswa.2017.02.046

    Article  Google Scholar 

  24. Olatunji, S.O., Selamat, A., Abdul Raheem, A.A.: Improved sensitivity-based linear learning method for permeability prediction of carbonate reservoir using interval type-2 fuzzy logic system. Appl. Soft Comput. 14, 144–155 (2014). https://doi.org/10.1016/j.asoc.2013.02.018

    Article  Google Scholar 

  25. Melin, P., Sánchez, D., Monica, J.C., Castillo, O.: Optimization using the firefly algorithm of ensemble neural networks with type-2 fuzzy integration for COVID-19 time series prediction. Soft Comput. (2021). https://doi.org/10.1007/s00500-020-05549-5

    Article  Google Scholar 

  26. Batchuluun, G., Kim, J.H., Hong, H.G., Kang, J.K., Park, K.R.: Fuzzy system based human behavior recognition by combining behavior prediction and recognition. Expert Syst. Appl. (2017). https://doi.org/10.1016/j.eswa.2017.03.052

    Article  Google Scholar 

  27. Jaafari, A., Zenner, E.K., Panahi, M., Shahabi, H.: Hybrid artificial intelligence models based on a neuro-fuzzy system and metaheuristic optimization algorithms for spatial prediction of wildfire probability. Agric. For. Meteorol. 266–267, 198–207 (2019). https://doi.org/10.1016/j.agrformet.2018.12.015

    Article  Google Scholar 

  28. Asklany, S.A., Elhelow, K., Youssef, I.K., Abd El-Wahab, M.: Rainfall events prediction using rule-based fuzzy inference system. Atmos. Res. 101, 228–236 (2011). https://doi.org/10.1016/j.atmosres.2011.02.015

    Article  Google Scholar 

  29. Mendel, J., Liu, X.: Simplified interval type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 21(6), 1056–1069 (2013). https://doi.org/10.1109/TFUZZ.2013.2241771

    Article  Google Scholar 

  30. Mai, D.S.: Interval type-2 fuzzy logic systems optimization with swarm algorithms for data classification. In: 13th International Conference on Knowledge and Systems Engineering (KSE), 2021, pp. 1–5 (2021). https://doi.org/10.1109/KSE53942.2021.9648598

  31. Castillo, O., Melin, P., Alanis, A., et al.: Optimization of interval type-2 fuzzy logic controllers using evolutionary algorithms. Soft Comput. 15, 1145–1160 (2011). https://doi.org/10.1007/s00500-010-0588-9

    Article  Google Scholar 

  32. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004). ISBN 0-262-04219-3

  33. Bezdek, J.C., Ehrlich, R., Full, W.: FCM: the fuzzy c-means clustering algorithm. Comput. Geosci. 10(2–3), 191–203 (1984). https://doi.org/10.1016/0098-3004(84)90020-7

    Article  Google Scholar 

  34. Haghrah, A.A., Ghaemi, S.: PyIT2FLS: A New Python Toolkit for Interval Type 2 Fuzzy Logic Systems. arXiv (2019). https://doi.org/10.48550/arxiv.1909.10051

Download references

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 105.08-2018.06. We also would like to thank Ialy Hydropower Company for providing the periodically monitoring data and supporting us in collecting anomaly observations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kien-Trinh Thi Bui.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (xlsx 17 KB)

Supplementary file 2 (xlsx 23 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mai, D.S., Bui, KT.T. & Van Doan, C. Application of Interval Type-2 Fuzzy Logic System and Ant Colony Optimization for Hydropower Dams Displacement Forecasting. Int. J. Fuzzy Syst. 25, 2052–2066 (2023). https://doi.org/10.1007/s40815-022-01452-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-022-01452-3

Keywords