Skip to main content

Advertisement

Log in

Nonfragile Guaranteed Cost Control of Discrete-Time Takagi–Sugeno Fuzzy Systems with Multiple Quantizations

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper is aimed at studying the nonfragile guaranteed cost (GC) control problem of discrete-time Takagi–Sugeno (T–S) fuzzy systems with multiple quantizations, where multiple quantizations mean that both the state and input are quantized by diverse static quantizers before being transmitted over the networks. To fully consider the effects of quantizations, a new GC function is adopted, where the quantized state and quantized input instead of the normal state and normal input are contained. The nonfragile GC controller design criteria of the discrete-time Takagi–Sugeno fuzzy systems are derived, which are expressed as a set of linear matrix inequalities (LMIs). Then, based on the two-step design strategy, the corresponding GC controller parameters can be obtained easily via the LMI toolbox. Lastly, the validity of the proposed method is verified by two examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Walsh, G.C., Hong, Ye., Bushnell, L.G.: Stability analysis of networked control systems. IEEE Trans. Control Syst. Technol. 10(3), 438–446 (2002)

    Google Scholar 

  2. Chen, C.L.P., Liu, Y., Wen, G.: Fuzzy neural network-based adaptive control for a class of uncertain nonlinear stochastic systems. IEEE Trans. Cybern. 44(5), 583–593 (2014)

    Google Scholar 

  3. Yang, R., Liu, G., Shi, P., Thomas, C., Basin, M.V.: Predictive output feedback control for networked control systems. IEEE Trans. Ind. Electron. 61(1), 512–520 (2014)

    Google Scholar 

  4. Yang, R., Shi, P., Liu, G., Gao, H.: Network-based feedback control for systems with mixed delays based on quantization and dropout compensation. Automatica. 47(12), 2805–2809 (2011)

    MathSciNet  MATH  Google Scholar 

  5. Er, M.J., Deng, C., Su, S.F., Wang, N.: Fuzzy synchronization control of complex dynamical networks under network attacks and actuator faults. Int. J. Fuzzy Syst. 21(7), 2043–2053 (2019)

    MathSciNet  Google Scholar 

  6. Li, H., Wu, Y., Chen, M., Lu, R.: Adaptive multigradient recursive reinforcement learning event-triggered tracking control for multiagent systems. IEEE Trans. Neural Netw. Learn. Syst. (2021). https://doi.org/10.1109/TNNLS.2021.3090570

    Article  Google Scholar 

  7. Fang, F., Ding, H., Liu, Y., Park, J.H.: Fault tolerant sampled-data \({H_\infty }\) control for networked control systems with probabilistic time-varying delay. Inf. Sci. 544, 395–414 (2021)

    MATH  Google Scholar 

  8. Ge, C., Yang, L., Zhao, Z., Zhang, J., Lu, Y.: Stochastic switched sampled-data control for uncertain fuzzy systems with packet dropout. Int. J. Fuzzy Syst. 23(1), 145–157 (2021)

    Google Scholar 

  9. Xu, Y., Fang, M., Wu, Z., Pan, Y., Chadli, M., Huang, T.: Input-based event-triggering consensus of multiagent systems under denial-of-service attacks. IEEE Trans. Syst. Man Cybern. Syst. 50(4), 1455–1464 (2020)

    Google Scholar 

  10. Zhang, M., Shi, P., Ma, L., Cai, J., Su, H.: Quantized feedback control of fuzzy Markov jump systems. IEEE Trans. Cybern. 49(9), 3375–3384 (2019)

    Google Scholar 

  11. Zhang, L., Ning, Z., Zheng, W.: Observer-based control for piecewise-affine systems with both input and output quantization. IEEE Trans. Automat. Control. 62(11), 5858–5865 (2017)

    MathSciNet  MATH  Google Scholar 

  12. Zheng, Q., Xu, S., Zhang, Z.: Nonfragile quantized \({H_\infty }\) filtering for discrete-time switched T–S fuzzy systems with local nonlinear models. IEEE Trans. Fuzzy Syst. 29(6), 1507–1517 (2021)

    Google Scholar 

  13. Ning, Z., Zhang, L., Rubio, J.D.J., Yin, X.: Asynchronous filtering for discrete-time fuzzy affine systems with variable quantization density. IEEE Trans. Cybern. 47(1), 153–164 (2017)

    Google Scholar 

  14. Chang, X., Li, Z., Park, J.H.: Fuzzy generalized \({{H}_{2}}\) filtering for nonlinear discrete-time systems with measurement quantization. IEEE Trans. Syst. Man Cybern. Syst. 48(12), 2419–2430 (2018)

    Google Scholar 

  15. Wu, Y., Gao, F., Liu, Z.: Finite-time state-feedback stabilisation of non-holonomic systems with low-order non-linearities. IET Control Theory Appl. 9(10), 1553–1560 (2015)

    MathSciNet  Google Scholar 

  16. Yu, J., Shi, P., Chen, X., Cui, G.: Finite-time command filtered adaptive control for nonlinear systems via immersion and invariance. Sci. China Inf. Sci. 64(8), 192202 (2021)

    MathSciNet  Google Scholar 

  17. Feng, G.: A survey on analysis and design of model-based fuzzy control systems. IEEE Trans. Fuzzy Syst. 14(5), 676–697 (2006)

    Google Scholar 

  18. Jafarzadeh, S., Fadali, M.S., Sonbol, A.H.: Stability analysis and control of discrete type-1 and type-2 TSK fuzzy systems: part I. stability analysis. IEEE Trans. Fuzzy Syst. 19(6), 989–1000 (2011)

    Google Scholar 

  19. Benzaouia, A., Oubah, R., Hajjaji, A.E.: Stabilization of positive Takagi-Sugeno fuzzy discrete-time systems with multiple delays and bounded controls. J. Franklin Inst. 351(7), 3719–3733 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Wang, P., Li, N.: Stable controller design for T–S fuzzy control systems with piecewise multi-linear interpolations into membership functions. Int. J. Fuzzy Syst. 21(5), 1585–1596 (2019)

    MathSciNet  Google Scholar 

  21. Li, Z., Chang, X., Xiong, J.: Event-based fuzzy tracking control for nonlinear networked systems subject to dynamic quantization. IEEE Trans. Fuzzy Syst. (2022). https://doi.org/10.1109/TFUZZ.2022.3193445

    Article  Google Scholar 

  22. Su, X., Xia, F., Liu, J., Wu, L.: Event-triggered fuzzy control of nonlinear systems with its application to inverted pendulum systems. Automatica. 94, 236–248 (2018)

    MathSciNet  MATH  Google Scholar 

  23. Dong, J., Wang, Y., Yang, G.: Output feedback fuzzy controller design with local nonlinear feedback laws for discrete-time nonlinear systems. IEEE Trans. Syst. Man Cybern. Part B 40(6), 1447–1459 (2010)

    Google Scholar 

  24. Shi, S., Fei, Z., Shi, P., Ahn, C.K.: Asynchronous filtering for discrete-time switched T–S fuzzy systems. IEEE Trans. Fuzzy Syst. 28(8), 1531–1541 (2020)

    Google Scholar 

  25. Qiu, J., Ji, W., Lam, H.K., Wang, M.: Fuzzy-affine-model based sampled-data filtering design for stochastic nonlinear systems. IEEE Trans. Fuzzy Syst. 29(11), 3360–3373 (2021)

    Google Scholar 

  26. Xie, X., Yue, D., Park, J.H.: Observer-based state estimation of discrete-time fuzzy systems based on a joint switching mechanism for adjacent instants. IEEE Trans. Cybern. 50(8), 3545–3555 (2020)

    Google Scholar 

  27. Li, Y., Min, X., Tong, S.: Adaptive fuzzy inverse optimal control for uncertain strict-feedback nonlinear systems. IEEE Trans. Fuzzy Syst. 28(10), 2363–2374 (2020)

    Google Scholar 

  28. Lopes, A.N.D., Leite, V.J.S., Silva, L.F.P., Guelton, K.: Anti-windup TS fuzzy PI-like control for discrete-time nonlinear systems with saturated actuators. Int. J. Fuzzy Syst. 22(1), 46–61 (2020)

    Google Scholar 

  29. Zhao, X., Wang, X., Ma, L., Zong, G.: Fuzzy-approximation-based asymptotic tracking control for a class of uncertain switched nonlinear systems. IEEE Trans. Fuzzy Syst. 28(4), 632–644 (2020)

    Google Scholar 

  30. Zhu, B., Wang, H., Zhang, J., Zhao, P.: Guaranteed cost impulsive control of nonlinear positive systems via T–S fuzzy model. Int. J. Fuzzy Syst. 24, 1467–1477 (2022)

    Google Scholar 

  31. Zheng, Q., Xu, S., Du, B.: Asynchronous nonfragile mixed \(H_\infty\) and \(L_{2}-L_\infty\) control of switched fuzzy systems with multiple state impulsive jumps. IEEE Trans. Fuzzy Syst. (2022). https://doi.org/10.1109/TFUZZ.2022.3216983

    Article  Google Scholar 

  32. Su, X., Xia, F., Song, Y., Basin, M.V., Zhao, L.: \({{L}_{2}}-{{L}_{\infty }}\) output feedback controller design for fuzzy systems over switching parameters. IEEE Trans. Fuzzy Syst. 26(6), 3755–3769 (2018)

    Google Scholar 

  33. Su, X., Wen, Y., Song, Y., Hayat, T.: Dissipativity-based fuzzy control of nonlinear systems via an event-triggered mechanism. IEEE Trans. Syst. Man Cybern. Syst. 49(6), 1208–1217 (2019)

    Google Scholar 

  34. Fei, Z., Yang, L., Sun, X., Ren, S.: Zonotopic set-membership state estimation for switched systems with restricted switching. IEEE Trans. Automat. Control. (2021). https://doi.org/10.1109/TAC.2021.3131545

    Article  Google Scholar 

  35. Chang, S., Peng, T.: Adaptive guaranteed cost control of systems with uncertain parameters. IEEE Trans. Automat. Control 17(4), 474–483 (1972)

    MathSciNet  MATH  Google Scholar 

  36. Zong, G., Wang, X., Zhao, H.: Robust finite-time guaranteed cost control for impulsive switched systems with time-varying delay. Int. J. Control Automat. Syst. 15, 113–121 (2017)

    Google Scholar 

  37. Bu, X., Liang, J., Wang, S., Yu, W.: Robust guaranteed cost control for a class of nonlinear 2-D systems with input saturation. Int. J. Control Automat. Syst. 18, 513–520 (2020)

    Google Scholar 

  38. Tandon, A., Dhawan, A.: Non-fragile robust optimal guaranteed cost control of uncertain 2-D discrete state-delayed systems. Int. J. Syst. Sci. 47(14), 3303–3319 (2016)

    MathSciNet  MATH  Google Scholar 

  39. Liu, X., Liu, Q., Li, Y.: Finite-time guaranteed cost control for uncertain mean-field stochastic systems. J. Franklin Inst. 357(5), 2813–2829 (2020)

    MathSciNet  MATH  Google Scholar 

  40. Wang, M., Ren, X., Dong, X., Chen, Q.: Predictor-based optimal robust guaranteed cost control for uncertain nonlinear systems with completely tracking errors constraint. J. Franklin Inst. 356(13), 6817–6841 (2019)

    MathSciNet  MATH  Google Scholar 

  41. Yue, D., Peng, C., Tang, G.Y.: Guaranteed cost control of linear systems over networks with state and input quantisations. IEE Proc. Control Theory Appl. 153(6), 658–664 (2006)

    MathSciNet  Google Scholar 

  42. Chang, X., Huang, R., Park, J.H.: Robust guaranteed cost control under digital communication channels. IEEE Trans. Ind. Inf. 16(1), 319–327 (2020)

    Google Scholar 

  43. Zheng, Q., Xu, S., Du, B.: Quantized guaranteed cost output feedback control for nonlinear networked control systems and its applications. IEEE Trans. Fuzzy Syst. 30(7), 2402–2411 (2022)

    Google Scholar 

  44. Zheng, Q., Xu, S., Du, B.: Asynchronous nonfragile guaranteed cost control for impulsive switched fuzzy systems with quantizations and its applications. IEEE Trans. Fuzzy Syst. 30(10), 4471–4483 (2022)

    Google Scholar 

  45. Xu, S., Dooren, P.V., Stefan, R., Lam, J.: Robust stability and stabilization for singular systems with state delay and parameter uncertainty. IEEE Trans. Automat. Control. 47(7), 1122–1128 (2002)

    MathSciNet  MATH  Google Scholar 

  46. Castelan, E.B., Tarbouriech, S., Queinnec, I.: Control design for a class of nonlinear continuous-time systems. Automatica. 44(8), 2034–2039 (2008)

    MathSciNet  MATH  Google Scholar 

  47. Jadbabaie, A., Jamshidi, M., Titli, A.: Guaranteed-cost design of continuous-time Takagi-Sugeno fuzzy controllers via linear matrix inequalities. 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36228). 1, 268-273 (1998)

Download references

Acknowledgements

This work was supported in part by the Support Program for Outstanding Youth Talents in Universities of Anhui Province (Grant No. gxyqZD2022048), and the National Natural Science Foundation of China (Grant Nos. 61803001, U21A20146).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qunxian Zheng.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zheng, Q. Nonfragile Guaranteed Cost Control of Discrete-Time Takagi–Sugeno Fuzzy Systems with Multiple Quantizations. Int. J. Fuzzy Syst. 25, 1518–1529 (2023). https://doi.org/10.1007/s40815-022-01454-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-022-01454-1

Keywords