Skip to main content
Log in

Adaptive Fixed-Time Fuzzy Control for Uncertain Nonlinear Systems with Asymmetric Time-Varying Full-State Constraints

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

In this paper, the adaptive fixed-time control problem is investigated for a class of uncertain nonlinear systems with asymmetric time-varying full-state constraints. A nonlinear state-constrained function (NSCF) is constructed to prevent the asymmetric time-varying full-state constraints from being violated. Different from the conventional used full-state constraints method (such as the barrier Lyapunov function (BLF) approach), the asymmetric and symmetric full-state constraints problem can be solved without switching controller structure and no additional assumption about virtual control is required to be satisfied by the NSCF approach. To overcome the “explosion of complexity” problem of the traditional backstepping method, the fixed-time command filters (FTCFs) are used to propose the control strategy. Furthermore, error compensation mechanisms are designed to remove the filtering errors induced by utilizing the FTCFs. Under the backstepping control framework, an adaptive fixed-time control strategy is designed to ensure that all signals in the closed-loop system and tracking error are bounded within fixed-time, and all states are guaranteed to maintain in the predefined regions. Finally, a simulation example is given to illustrate the effectiveness of the proposed control scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bi, W., Wang, T., Yu, X.: Fuzzy adaptive decentralized control for nonstrict-feedback large-scale switched fractional-order nonlinear systems. IEEE Trans. Cybern. 52(9), 8887–8896 (2022)

    Article  Google Scholar 

  2. Deng, C., Yang, G.: Distributed adaptive fuzzy control for nonlinear multiagent systems under directed graphs. IEEE Trans. Fuzzy Syst. 26(3), 1356–1366 (2017)

    Google Scholar 

  3. Fuentes-Aguilar, R.Q., Chairez, I.: Adaptive tracking control of state constraint systems based on differential neural networks: A barrier lyapunov function approach. IEEE Trans. Neural Netw. Learn. Syst. 31(12), 5390–5401 (2020)

    Article  MathSciNet  Google Scholar 

  4. Gao, M., Ding, L., Jin, X.: Elm-based adaptive faster fixed-time control of robotic manipulator systems. IEEE Trans. Neural Netw. Learn. Syst. (2021). https://doi.org/10.1109/TNNLS.2021.3116958

    Article  Google Scholar 

  5. Huo, X., Karimi, H.R., Zhao, X., Wang, B., Zong, G.: Adaptive-critic design for decentralized event-triggered control of constrained nonlinear interconnected systems within an identifier-critic framework. IEEE Trans. Cybern. (2021). https://doi.org/10.1109/TCYB.2020.3037321

    Article  Google Scholar 

  6. Jiang, B., Hu, Q., Friswell, M.I.: Fixed-time attitude control for rigid spacecraft with actuator saturation and faults. IEEE Trans. Control Syst. Technol. 24(5), 1892–1898 (2016)

    Article  Google Scholar 

  7. Jin, X., Lü, S., Yu, J.: Adaptive NN-based consensus for a class of nonlinear multiagent systems with actuator faults and faulty networks. IEEE Trans. Neural Netw. Learn. Syst. (2021). https://doi.org/10.1109/TNNLS.2021.3053112

    Article  Google Scholar 

  8. Kang, S., Liu, P.X., Wang, H.: Command filter-based adaptive fuzzy decentralized control for large-scale nonlinear systems. Nonlinear Dyn. 105(4), 3239–3253 (2021)

    Article  Google Scholar 

  9. Kong, L., Yu, X., Zhang, S.: Neuro-learning-based adaptive control for state-constrained strict-feedback systems with unknown control direction. ISA Trans. 112, 12–22 (2021)

    Article  Google Scholar 

  10. Li, H., Zhang, Z., Yan, H., Xie, X.: Adaptive event-triggered fuzzy control for uncertain active suspension systems. IEEE Trans. Cybern. 49(12), 4388–4397 (2018)

    Article  Google Scholar 

  11. Li, X., Yan, J., Yang, G.: Adaptive fault estimation for T-S fuzzy interconnected systems based on persistent excitation condition via reference signals. IEEE Trans. Cybern. 49(8), 2822–2834 (2018)

    Article  Google Scholar 

  12. Liang, Y., Li, Y., Che, W., Hou, Z.: Adaptive fuzzy asymptotic tracking for nonlinear systems with nonstrict-feedback structure. IEEE Trans. Cybern. 51(2), 853–861 (2021)

    Article  Google Scholar 

  13. Lin, G., Li, H., Ahn, C.K., Yao, D.: Event-based finite-time neural control for human-in-the-loop UAV attitude systems. IEEE Trans. Neural Netw. Learn. Syst. (2022). https://doi.org/10.1109/TNNLS.2022.3166531

    Article  Google Scholar 

  14. Liu, G., Liang, H., Pan, Y., Ahn, C.K.: Antagonistic interaction-based bipartite consensus control for heterogeneous networked systems. IEEE Trans. Syst. Man Cybern.: Syst. (2022). https://doi.org/10.1109/TSMC.2022.3167120

    Article  Google Scholar 

  15. Liu, H., Li, X., Deng, C., Ahn, C.K.: Fault estimation and control for unknown discrete-time systems based on data-driven parameterization approach. IEEE Trans. Cybern. (2021). https://doi.org/10.1109/TCYB.2021.3107425

    Article  Google Scholar 

  16. Liu, L., Chen, A., Liu, Y.: Adaptive fuzzy output-feedback control for switched uncertain nonlinear systems with full-state constraints. IEEE Trans. Cybern. (2021). https://doi.org/10.1109/TCYB.2021.3050510

    Article  Google Scholar 

  17. Liu, L., Liu, Y., Li, D., Tong, S., Wang, Z.: Barrier Lyapunov function-based adaptive fuzzy FTC for switched systems and its applications to resistance-inductance-capacitance circuit system. IEEE Trans. Cybern. 50(8), 3491–3502 (2019)

    Article  Google Scholar 

  18. Ma, Y., Che, W., Deng, C., Wu, Z.: Distributed model-free adaptive control for learning nonlinear MASs under DoS attacks. IEEE Trans. Neural Netw. Learn. Syst. (2021). https://doi.org/10.1109/TNNLS.2021.3104978

    Article  Google Scholar 

  19. Qian, C., Lin, W.: A continuous feedback approach to global strong stabilization of nonlinear systems. IEEE Trans. Autom. Control 46(7), 1061–1079 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Qin, H., Yang, H., Sun, Y., Zhang, Y.: Adaptive interval type-2 fuzzy fixed-time control for underwater walking robot with error constraints and actuator faults using prescribed performance terminal sliding-mode surfaces. Int. J. Fuzzy Syst. 23(4), 1137–1149 (2021)

    Article  Google Scholar 

  21. Ren, P., Wang, F., Zhu, R.: Adaptive fixed-time fuzzy control of uncertain nonlinear quantized systems. Int. J. Fuzzy Syst. 23(3), 794–803 (2021)

    Article  Google Scholar 

  22. Shi, X., Cheng, Y., Yin, C., Huang, X., Zhong, S.: Design of adaptive backstepping dynamic surface control method with RBF neural network for uncertain nonlinear system. Neurocomputing 330, 490–503 (2019)

    Article  Google Scholar 

  23. Shi, X., Zhou, Z., Zhou, D., Li, R., Chen, X.: Observer-based event-triggered fixed-time control for nonlinear system with full-state constraints and input saturation. Int. J. Control 95(2), 432–446 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  24. Shotorbani, A.M., Mohammadi-Ivatloo, B., Wang, L., Marzband, M., Sabahi, M.: Application of finite-time control Lyapunov function in low-power PMSG wind energy conversion systems for sensorless MPPT. Int. J. Electr. Power Energy Syst. 106, 169–182 (2019)

    Article  Google Scholar 

  25. Sui, S., Tong, S.: Finite-time fuzzy adaptive ppc for nonstrict-feedback nonlinear mimo systems. IEEE Trans. Cybern. 53, 732–742 (2022). https://doi.org/10.1109/TCYB.2022.3163739

    Article  Google Scholar 

  26. Sui, S., Tong, S.: Finite-time fuzzy adaptive PPC for nonstrict-feedback nonlinear MIMO systems. IEEE Trans. Cybern. (2022). https://doi.org/10.1109/TCYB.2022.3163739

    Article  Google Scholar 

  27. Wang, L., Liu, P.X., Wang, H.: Fast finite-time control for nonaffine stochastic nonlinear systems against multiple actuator constraints via output feedback. IEEE Trans. Cybern. (2022). https://doi.org/10.1109/TCYB.2022.3177587

    Article  Google Scholar 

  28. Wang, N., Gao, Y., Yang, C., Zhang, X.: Reinforcement learning-based finite-time tracking control of an unknown unmanned surface vehicle with input constraints. Neurocomputing 484, 26–37 (2022)

    Article  Google Scholar 

  29. Wang, Y., Xu, N., Liu, Y., Zhao, X.: Adaptive fault-tolerant control for switched nonlinear systems based on command filter technique. Appl. Math. Comput. 392, 125725 (2021)

    MathSciNet  MATH  Google Scholar 

  30. Wang, Z., Chen, Z., Zhang, Y., Yu, X., Wang, X., Liang, B.: Adaptive finite-time control for bilateral teleoperation systems with jittering time delays. Int. J. Robust Nonlinear Control 29(4), 1007–1030 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wei, Y., Karimi, H.R.: Dynamic sliding mode control for nonlinear parameter-varying systems. Int. J. Robust Nonlinear Control 31(17), 8408–8419 (2021)

    Article  MathSciNet  Google Scholar 

  32. Wu, Y., Wang, Z.: Fuzzy adaptive practical fixed-time consensus for second-order nonlinear multiagent systems under actuator faults. IEEE Trans. Cybern. 51(3), 1150–1162 (2020)

    Article  Google Scholar 

  33. Xi, C., Dong, J.: Adaptive reliable guaranteed performance control of uncertain nonlinear systems by using exponent-dependent barrier Lyapunov function. Int. J. Robust Nonlinear Control 29(4), 1051–1062 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. Xia, J., Lian, Y., Su, S., Shen, H., Chen, G.: Observer-based event-triggered adaptive fuzzy control for unmeasured stochastic nonlinear systems with unknown control directions. IEEE Trans. Cybern. 52(10), 10655–10666 (2022)

    Article  Google Scholar 

  35. Xie, X., Lu, J., Yue, D., Ding, D.: Enhanced fuzzy fault estimation of discrete-time nonlinear systems via a new real-time gain-scheduling mechanism. IEEE Trans. Cybern. (2021). https://doi.org/10.1109/TCYB.2021.3107040

    Article  Google Scholar 

  36. Xie, X., Wei, C., Gu, Z., Shi, K.: Relaxed resilient fuzzy stabilization of discrete-time Takagi-Sugeno systems via a higher order time-variant balanced matrix method. IEEE Trans. Fuzzy Syst. (2022). https://doi.org/10.1109/TFUZZ.2022.3145809

    Article  Google Scholar 

  37. Yang, H., Ye, D.: Adaptive fuzzy nonsingular fixed-time control for nonstrict-feedback constrained nonlinear multiagent systems With input saturation. IEEE Trans. Fuzzy Syst. 29(10), 3142–3153 (2020)

    Article  Google Scholar 

  38. Yao, D., Li, H., Lu, R., Shi, Y.: Event-triggered guaranteed cost leader-following consensus control of second-order nonlinear multiagent systems. IEEE Trans. Syst. Man Cybern.: Syst. 52(4), 2615–2624 (2021)

    Article  Google Scholar 

  39. Yao, D., Li, H., Shi, Y.: Adaptive event-triggered sliding mode control for consensus tracking of nonlinear multi-agent systems with unknown perturbations. IEEE Trans. Cybern. (2022). https://doi.org/10.1109/TCYB.2022.3172127

    Article  Google Scholar 

  40. Ye, D., Zou, A., Sun, Z.: Predefined-time predefined-bounded attitude tracking control for rigid spacecraft. IEEE Trans. Aerosp. Electron. Syst. 58(1), 464–472 (2021)

    Article  Google Scholar 

  41. Yu, J., Chen, B., Yu, H., Lin, C., Zhao, L.: Neural networks-based command filtering control of nonlinear systems with uncertain disturbance. Inf. Sci. 426, 50–60 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhang, L., Ding, H., Shi, J., Huang, Y., Chen, H., Guo, K., Li, Q.: An adaptive backstepping sliding mode controller to improve vehicle maneuverability and stability via torque vectoring control. IEEE Trans. Veh. Technol. 69(3), 2598–2612 (2020)

    Article  Google Scholar 

  43. Zhao, J., Tong, S., Li, Y.: Observer-based fuzzy adaptive control for mimo nonlinear systems with non-constant control gain and input delay. IET Control Theory Appl. 15(11), 1488–1505 (2021)

    Article  Google Scholar 

  44. Zhao, L., Yu, J., Lin, C., Yu, H.: Distributed adaptive fixed-time consensus tracking for second-order multi-agent systems using modified terminal sliding mode. Appl. Math. Comput. 312, 23–35 (2017)

    MathSciNet  MATH  Google Scholar 

  45. Zhu, Z., Liang, H., Liu, Y., Xue, H.: Command filtered event-triggered adaptive control for MIMO stochastic multiple time-delay systems. Int. J. Robust Nonlinear Control 32(2), 715–736 (2022)

    Article  MathSciNet  Google Scholar 

  46. Zhuang, H., Sun, Q., Chen, Z., Zeng, X.: Robust adaptive sliding mode attitude control for aircraft systems based on back-stepping method. Aerosp. Sci. Technol. 118, 107069 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (61833009, 61690212), Natural Science Foundation of Shaanxi Province of China (2022JQ-636), and Special Scientific Research Plan Project of Shaanxi Province Education Department (21JK0905).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruixia Liu.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Liu, M., Shi, Y. et al. Adaptive Fixed-Time Fuzzy Control for Uncertain Nonlinear Systems with Asymmetric Time-Varying Full-State Constraints. Int. J. Fuzzy Syst. 25, 1597–1611 (2023). https://doi.org/10.1007/s40815-023-01461-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-023-01461-w

Keywords

Navigation