Abstract
This article is focused on the implementation Interval Type-3 Fuzzy Logic Systems (IT3FLSs) for control problems with the goal of analyzing their performance and efficiency in the stabilization of nonlinear plants when perturbation is considered on the models. Two control problems are presented in which IT3FLSs allow the design of efficient fuzzy controllers when compared to alternative approaches. The methodology with the implementation of the vertical slices concept is utilized for approximating the results of IT3FLSs in the control problems. Simulation results with type-1, interval type-2, and generalized type-2 are presented and analyzed in comparison with IT3FLSs. To highlight the excellent performance of IT3FLs, two types of perturbations are considered in the models, showing that IT3FLs outperform type-2 and type-1 in control. The parameters of \(\lambda ({\text{Lower}}\; {\text{Scale}}) \; {\text{and}}\;{\ell}({\text{Lower}}\; {\text{Lag}})\) that characterize an IT3FLS are changed manually with the 0.2, 0.5 and 0.9 values. Excellent results are presented with the value of 0.2. Several types of control performance metrics are presented to illustrate the results. The most relevant contribution is showing the potential of interval type-3 in the control area in outperforming alternative approaches.



















Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Zadeh, L.A.: Fuzzy sets. In: Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected Papers by Lotfi A Zadeh (pp. 394–432) (1996).
Zadeh, L.A., Klir, G.J., Yuan, B.: Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected Papers, vol. 6. World Scientific, Singapore (1996)
Rickard, J.T., Aisbett, J., Gibbon, G., Morgenthaler, D.: Fuzzy subsethood for type-n fuzzy sets. In: NAFIPS 2008–2008 Annual Meeting of the North American Fuzzy Information Processing Society (pp. 1–6). IEEE (2008)
Singh, D., Verma, N.K., Ghosh, A.K., Malagaudanavar, A.K.: An approach towards the design of interval type-3 TS fuzzy system. IEEE Trans. Fuzzy Syst. (2021)
Qasem, S.N., Ahmadian, A., Mohammadzadeh, A., Rathinasamy, S., Pahlevanzadeh, B.: A type-3 logic fuzzy system: optimized by a correntropy based Kalman filter with adaptive fuzzy kernel size. Inf. Sci. 572, 424–443 (2021)
Wang, J.H., Tavoosi, J., Mohammadzadeh, A., Mobayen, S., Asad, J.H., Assawinchaichote, W., Skruch, P.: Non-Singleton type-3 fuzzy approach for flowmeter fault detection: experimental study in a gas industry. Sensors 21(21), 7419 (2021)
Alattas, K.A., Mohammadzadeh, A., Mobayen, S., Aly, A.A., Felemban, B.F.: A new data-driven control system for MEMSs gyroscopes: dynamics estimation by type-3 fuzzy systems. Micromachines 12(11), 1390 (2021)
Cao, Y., Raise, A., Mohammadzadeh, A., Rathinasamy, S., Band, S.S., Mosavi, A.: Deep learned recurrent type-3 fuzzy system: application for renewable energy modeling/prediction. Energy Rep. 7, 8115–8127 (2021)
Tian, M.W., Mohammadzadeh, A., Tavoosi, J., Mobayen, S., Asad, J.H., Castillo, O., Várkonyi-Kóczy, A.R.: A deep-learned type-3 fuzzy system and its application in modeling problems. Acta Polytechnica Hungarica 19(2), 151–172 (2022)
Mohammadzadeh, A., Sabzalian, M.H., Zhang, W.: An interval type-3 fuzzy system and a new online fractional-order learning algorithm: theory and practice. IEEE Trans. Fuzzy Syst. 28(9), 1940–1950 (2019)
Ma, C., Mohammadzadeh, A., Turabieh, H., Mafarja, M., Band, S.S., Mosavi, A.: Optimal type-3 fuzzy system for solving singular multi-pantograph equations. IEEE Access 8, 225692–225702 (2020)
Gheisarnejad, M., Mohammadzadeh, A., Farsizadeh, H., Khooban, M.H.: Stabilization of 5G Telecom Converter-Based Deep Type-3 Fuzzy Machine Learning Control for Telecom Applications. Express Briefs, IEEE Transactions on Circuits and Systems II (2021)
Liu, Z., Mohammadzadeh, A., Turabieh, H., Mafarja, M., Band, S.S., Mosavi, A.: A new online learned interval type-3 fuzzy control system for solar energy management systems. IEEE Access 9, 10498–10508 (2021)
Vafaie, R.H., Mohammadzadeh, A., Piran, M.: A new type-3 fuzzy predictive controller for MEMS gyroscopes. Nonlinear Dyn. 106(1), 381–403 (2021)
Tian, M.W., Yan, S.R., Mohammadzadeh, A., Tavoosi, J., Mobayen, S., Safdar, R., Wudhichai, A., Mai, T.V., Zhilenkov, A.: Stability of interval type-3 fuzzy controllers for autonomous vehicles. Mathematics 9(21), 2742 (2021)
Mohammadzadeh, A., Castillo, O., Band, S.S., Mosavi, A.: A novel fractional-order multiple-model type-3 fuzzy control for nonlinear systems with unmodeled dynamics. Int. J. Fuzzy Syst. 23, 1633–1651 (2021)
Gheisarnejad, M., Mohammadzadeh, A., Khooban, M.: Model predictive control-based type-3 fuzzy estimator for voltage stabilization of DC power converters. IEEE Trans. Ind. Electron. 69, 13849–13858 (2021)
Taghieh, A., Aly, A.A., Felemban, B.F., Althobaiti, A., Mohammadzadeh, A., Bartoszewicz, A.: A hybrid predictive type-3 fuzzy control for time-delay multi-agent systems. Electronics 11(1), 63 (2022)
Yan, S., Aly, A.A., Felemban, B.F., Gheisarnejad, M., Tian, M., Khooban, M.H., Mohammadzadeh, A., Mobayen, S.: A new event-triggered type-3 fuzzy control system for multi-agent systems: optimal economic efficient approach for actuator activating. Electronics 10(24), 3122 (2021)
Nabipour, N., Qasem, S.N., Jermsittiparsert, K.: Type-3 fuzzy voltage management in PV/hydrogen fuel cell/battery hybrid systems. Int. J. Hydrogen Energy 45(56), 32478–33249 (2020)
Castillo, O., Castro, J.R., Melin, P.: Interval type-3 fuzzy logic systems (IT3FLS). In: Interval Type-3 Fuzzy Systems: Theory and Design (pp. 45–98). Springer, Cham (2022)
Castillo, O., Castro, J.R., Melin, P.: A methodology for building interval type-3 fuzzy systems based on the principle of justifiable granularity. Int. J. Intell. Syst. 37, 7909–7943 (2022)
Tian, M.W., Yan, S.R., Liu, J., Alattas, K.A., Mohammadzadeh, A., Vu, M.T.: A new type-3 fuzzy logic approach for chaotic systems: robust learning algorithm. Mathematics 10(15), 2594 (2022)
Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)
Liang, Q., Mendel, J.M.: Interval type-2 fuzzy logic systems: theory and design. IEEE Trans. Fuzzy Syst. 8(5), 535–550 (2000)
Mendel, J.M., John, R.I., Liu, F.: Interval type-2 fuzzy logic systems made simple. IEEE Trans. Fuzzy Syst. 14(6), 808–821 (2006)
Wagner, C., Hagras, H.: Toward general type-2 fuzzy logic systems based on zSlices. IEEE Trans. Fuzzy Syst. 18(4), 637–660 (2010). https://doi.org/10.1109/TFUZZ.2010.2045386
Chen, C., Wu, D., Garibaldi, J.M., John, R.I., Twycross, J., Mendel, J.M.: A Comprehensive study of the efficiency of type-reduction algorithms. IEEE Trans. Fuzzy Syst. 29(6), 1556–1566 (2021)
Chen, Y., Wang, D., Ning, W.: Studies on centroid type-reduction algorithms for general type-2 fuzzy logic systems Studies on centroid type-reduction algorithms for general type-2 fuzzy logic systems. Int. J. Innovat. Comput. Inf. Control 11(6), 1987–2000 (2015)
Mendel, J.M., Liu, X.: Simplified interval type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 21(6), 1056–1069 (2013)
Mendel, J.M.: General type-2 fuzzy logic systems made simple: a tutorial. IEEE Trans. Fuzzy Syst. 22(5), 1162–1182 (2013)
Lucas, L.A., Centeno, T.M., & Delgado, M. R. (2007, July). General type-2 fuzzy inference systems: Analysis, design and computational aspects. In: 2007 IEEE International Fuzzy Systems Conference (pp. 1–6). IEEE.
Iancu, I.: A Mamdani type fuzzy logic controller. Fuzzy Logic-Controls Concepts Theories Appl. 15(2), 325–350 (2012)
Mamdani, E.H.: Application of fuzzy algorithms for control of simple dynamic plant. In: Proceedings of the Institution of Electrical Engineers (vol. 121, No. 12, pp. 1585–1588). IET (1974)
Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man Mach. Stud. 7(1), 1–13 (1975)
Mamdani, E.H.: Advances in the linguistic synthesis of fuzzy controllers. Int. J. Man Mach. Stud. 8(6), 669–678 (1976)
Zulfikar, W.B., Prasetyo, P.K., Ramdhani, M.A.: Implementation of mamdani fuzzy method in employee promotion system. In: IOP Conference Series: Materials Science and Engineering, vol. 288, no. 1, p. 012147. IOP Publishing (2018)
Chai, Y., Jia, L., Zhang, Z.: Mamdani model based adaptive neural fuzzy inference system and its application. Int. J. Comput. Intell. 5(1), 22–29 (2009)
Karnik, N. N. and J. M. Mendel, J. M. Operations on Type-2 Fuzzy Sets, Fuzzy Sets and Systems, vol. 122, pp. 327– 348, 2001.
Calcev, G.: Some remarks on the stability of Mamdani fuzzy control systems. IEEE Trans. Fuzzy Syst. 6(3), 436–442 (1998)
Mamdani, E.H.: Application of fuzzy logic to approximate reasoning using linguistic synthesis. IEEE Trans. Comput. 26(12), 1182–1191 (1977)
King, P.J., Mamdani, E.H.: The application of fuzzy control systems to industrial processes. Automatica 13(3), 235–242 (1977)
Amador-Angulo, L., & Castillo, O.: Comparative study of bio-inspired algorithms applied in the design of fuzzy controller for the water tank. In: Recent Developments and New Direction in Soft-Computing Foundations and Applications, pp. 419–438. Springer, Cham (2016)
Amador-Angulo, L., Castillo, O., Peraza, C., Ochoa, P.: An efficient chicken search optimization algorithm for the optimal design of fuzzy controllers. Axioms 10(1), 30 (2021)
Castillo, O., Amador-Angulo, L.: A generalized type-2 fuzzy logic approach for dynamic parameter adaptation in bee colony optimization applied to fuzzy controller design. Inf. Sci. 460, 476–496 (2018)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Amador-Angulo, L., Castillo, O., Castro, J.R. et al. A New Approach for Interval Type-3 Fuzzy Control of Nonlinear Plants. Int. J. Fuzzy Syst. 25, 1624–1642 (2023). https://doi.org/10.1007/s40815-023-01470-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40815-023-01470-9