Abstract
Many real−world applications are dynamic multi−objective optimization problems (DMOPs). The transfer of knowledge in the evolutionary process is believed to have advantages in solving DMOPs. However, most existing works can hardly be focused on the effectiveness of knowledge, which may lead to the negative transfer to degrade searching performance of the population. To address this issue, a knowledge reconstruction (KR) method is proposed for dynamic multi−objective particle swarm optimization (DMOPSO) using fuzzy neural network (FNN). The contributions of the proposed KR−DMOPSO are threefold: First, a knowledge extraction method, using a FNN model, is developed to obtain the domain knowledge of two successive Pareto optimal sets when dynamic occurs. Then, the domain knowledge can be applied to explore the evolutionary tendency. Second, a knowledge evaluation mechanism, based on the diversity and convergence of non−dominated solutions, is devised to select the domain knowledge. Then, the effective knowledge can be achieved. Third, a knowledge reconstruction strategy is designed to obtain the suitable domain knowledge. Then, this knowledge can be used to adapt to dynamic environments to improve the searching performance of the population. Finally, the proposed KR−DMOPSO is compared with other advanced dynamic multi−objective optimization algorithms (DMOAs). The results show that the proposed KR−DMOPSO is superior to other compared algorithms.



Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Shen, X., Minku, L.L., Bahsoon, R., Yao, X.: Dynamic software project scheduling through a proactive−rescheduling method. IEEE Trans. Softw. Eng. 42, 658–686 (2016)
Zhou, H., Zeng, Z., Lian, L.: Adaptive re−planning of AUVs for environmental sampling missions: A fuzzy decision support system based on multi−objective particle swarm optimization. Int. J. Fuzzy Syst. 20, 650–671 (2018)
Han, H.G., Liu, Z., Lu, W., Hou, Y., Qiao, J.F.: Dynamic MOPSO−based optimal control for wastewater treatment process. IEEE Trans. Cybern. 51, 2518–2528 (2021)
Shahverdian, M.H., Sohani, A., Sayyaadi, H., Samiezadeh, S., Doranehgard, M.H., Karimi, N., Li, L.K.B.: A dynamic multi−objective optimization procedure for water cooling of a photovoltaic module. Sustain. Energy Technol. Assess. 45, 101111 (2021)
Li, H., Song, B., Tang, X., Xie, Y., Zhou, X.: Adaptive pareto optimal control of T−S fuzzy system with input constraints and its application. Int. J. Fuzzy Syst. (2021). https://doi.org/10.1007/s40815−021−01180−0
Rizk−Allah, R.M., Abo−Sinna, M.A., Hassanien, A.E.: Intuitionistic fuzzy sets and dynamic programming for multi−objective non−linear programming problems. Int. J. Fuzzy Syst. 23, 334–352 (2021)
Khosraviani, M., Jahanshahi, M., Farahani, M., Bidaki, A.R.Z.: Load−Frequency Control Using Multi−objective Genetic Algorithm and Hybrid Sliding Mode Control−Based SMES. Int. J. Fuzzy Syst. 20, 280–294 (2018)
Zhou, A., Jin, Y., Zhang, Q.: A Population prediction strategy for evolutionary dynamic multiobjective optimization. IEEE Trans. Cybern. 44, 40–53 (2014)
Ahrari, A., Elsayed, S., Sarker, R., Essam, D., CoelloCoello, C.A.: Weighted pointwise prediction method for dynamic multiobjective optimization. Inf. Sci. 546, 349–367 (2021)
Wang, C., Yen, G.G., Zou, F.: A novel predictive method based on key points for dynamic multi−objective optimization. Expert Syst. Appl. (2022). https://doi.org/10.1016/j.eswa.2021.116127
Rong, M., Gong, D., Pedrycz, W., Wang, L.: A multimodel prediction method for dynamic multiobjective evolutionary optimization. IEEE Trans. Evol. Comput. 24, 290–304 (2020)
Wang, Y., Li, B.: Multi−strategy ensemble evolutionary algorithm for dynamic multi−objective optimization. Memetic Comput. 2, 3–24 (2010)
Jiang, M., Qiu, L., Huang, Z., Yen, G.G.: Dynamic multi−objective estimation of distribution algorithm based on domain adaptation and nonparametric estimation. Inf. Sci. 435, 203–223 (2018)
Wu, Y., Shi, L., Liu, X.: A new dynamic strategy for dynamic multi−objective optimization. Inf. Sci. 529, 116–131 (2020)
Rong, M., Gong, D., Zhang, Y., Jin, Y., Pedrycz, W.: Multidirectional prediction approach for dynamic multiobjective optimization problems. IEEE Trans. Cybern. 49, 3362–3374 (2019)
Jiang, S., Yang, S.: A steady−state and generational evolutionary algorithm for dynamic multiobjective optimization. IEEE Trans. Evol. Comput. 21, 65–82 (2017)
Ma, X., Yang, J., Sun, H., Hu, Z., Wei, L.: Multiregional co−evolutionary algorithm for dynamic multiobjective optimization. Inf. Sci. 545, 1–24 (2021)
Hu, Y., Ou, J., Zheng, J., Zou, J., Yang, S., Ruan, G.: Solving dynamic multi−objective problems with an evolutionary multi−directional search approach. Knowledge−Based Syst. 194, 105175 (2020)
Azzouz, R., Bechikh, S., Said, L.: Ben: A dynamic multi−objective evolutionary algorithm using a change severity−based adaptive population management strategy. Soft Comput. 21, 885–906 (2017)
Zhang, Q., Yang, S., Jiang, S., Wang, R., Li, X.: Novel prediction strategies for dynamic multiobjective optimization. IEEE Trans. Evol. Comput. 24, 260–274 (2020)
Xu, B., Zhang, Y., Gong, D., Guo, Y., Rong, M.: Environment sensitivity−based cooperative co−evolutionary algorithms for dynamic multi−objective optimization. IEEE/ACM Trans. Comput. Biol. Bioinform. 15, 1877–1890 (2018)
Wang, S., Liu, G., Gao, M., Cao, S., Guo, A., Wang, J.: Heterogeneous comprehensive learning and dynamic multi−swarm particle swarm optimizer with two mutation operators. Inf. Sci. 540, 175–201 (2020)
Liu, R., Li, J., fan, J., Mu, C., Jiao, L.: A coevolutionary technique based on multi−swarm particle swarm optimization for dynamic multi−objective optimization. Eur. J. Oper. Res. 261, 1028–1051 (2017)
Jiang, M., Wang, Z., Guo, S., Gao, X., Tan, K.C.: Individual−based transfer learning for dynamic multiobjective optimization. IEEE Trans. Cybern. 51, 4968–4981 (2021)
Liu, X.F., Zhou, Y.R., Yu, X.: Cooperative particle swarm optimization with reference−point−based prediction strategy for dynamic multiobjective optimization. Appl. Soft Comput. J. 87, 105988 (2020)
Zhang, S., Xie, J., Wang, H.: Fuzzy adaptive NSGA−III for large−scale optimization problems. Int. J. Fuzzy Syst. (2022). https://doi.org/10.1007/s40815−021−01220−9
Yang, C., Ding, J., Jin, Y., Chai, T.: Offline data−driven multiobjective optimization: Knowledge transfer between surrogates and generation of final solutions. IEEE Trans. Evol. Comput. 24, 409–423 (2020)
Zou, J., Li, Q., Yang, S., Bai, H., Zheng, J.: A prediction strategy based on center points and knee points for evolutionary dynamic multi−objective optimization. Appl. Soft Comput. 61, 806–818 (2017)
Jiang, M., Huang, Z., Qiu, L., Huang, W., Yen, G.G.: Transfer learning−based dynamic multiobjective optimization algorithms. IEEE Trans. Evol. Comput. 22, 501–514 (2018)
Liefooghe, A., Daolio, F., Verel, S., Derbel, B., Aguirre, H., Tanaka, K.: Landscape−aware performance prediction for evolutionary multiobjective optimization. IEEE Trans. Evol. Comput. 24, 1063–1077 (2020)
Liu, R., Li, J., Fan, J., Jiao, L.: A dynamic multiple populations particle swarm optimization algorithm based on decomposition and prediction. Appl. Soft Comput. J. 73, 434–459 (2018)
Cao, L., Xu, L., Goodman, E.D., Bao, C., Zhu, S.: Evolutionary dynamic multiobjective optimization assisted by a support vector regression predictor. IEEE Trans. Evol. Comput. 24, 305–319 (2020)
Feng, L., Zhou, W., Liu, W., Ong, Y.−S., Tan, K.C.: Solving dynamic multiobjective problem via autoencoding evolutionary search. Cybern IEEE Trans (2020). https://doi.org/10.1109/TCYB.2020.3017017
Iqbal, M., Xue, B., Al−Sahaf, H., Zhang, M.: Cross−domain reuse of extracted knowledge in genetic programming for image classification. IEEE Trans. Evol. Comput. 21, 569–587 (2017)
Feng, L., Zhou, L., Zhong, J., Gupta, A., Ong, Y.S., Tan, K.C., Qin, A.K.: Evolutionary multitasking via explicit autoencoding. IEEE Trans. Cybern. 49, 3457–3470 (2019)
Min, A.T.W., Ong, Y.S., Gupta, A., Goh, C.K.: Multiproblem surrogates: transfer evolutionary multiobjective optimization of computationally expensive problems. IEEE Trans. Evol. Comput. 23, 15–28 (2019)
Zhang, J., Zhou, W., Chen, X., Yao, W., Cao, L.: Multisource selective transfer framework in multiobjective optimization problems. IEEE Trans. Evol. Comput. 24, 424–438 (2020)
Zhou, L., Feng, L., Tan, K.C., Zhong, J., Zhu, Z., Liu, K., Chen, C.: Toward adaptive knowledge transfer in multifactorial evolutionary computation. IEEE Trans. Cybern. 51, 2563–2576 (2021)
Zou, F., Yen, G.G., Tang, L., Wang, C.: A reinforcement learning approach for dynamic multi−objective optimization. Inf. Sci. 546, 815–834 (2021)
Ismayilov, G., Topcuoglu, H.R.: Neural network based multi−objective evolutionary algorithm for dynamic workflow scheduling in cloud computing. Futur. Gener. Comput. Syst. 102, 307–322 (2020)
Jiang, M., Wang, Z., Qiu, L., Guo, S., Gao, X., Tan, K.C.: A fast dynamic evolutionary multiobjective algorithm via manifold transfer learning. IEEE Trans. Cybern. 51, 3417–3428 (2021)
Coello, C., Pulido, G., Lechuga, M.: Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol. Comput. 8, 256–279 (2004)
Han, H., Wu, X., Liu, Z., Qiao, J.: Design of self−organizing intelligent controller using fuzzy neural network. IEEE Trans. Fuzzy Syst. 26, 3097–3111 (2018)
Jiang, S., Yang, S., Yao, X., Tan, K.C., Kaiser, M.: Benchmark problems for CEC2018 competition on dynamic multiobjective optimisation. CEC2018 Compet. 1–18 (2018). https://www.semanticscholar.org/paper/Benchmark-Problems-for-CEC2018-Competition-on-Jiang-Yang/9bb47fd3d6445d739b1e78aa2d177312d07fac1b#citing-papers
Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi−objective optimization test problems. In: Proceedings of the 2002 Congress on Evolutionary Computation, CEC 2002. pp. 825–830 (2002)
Han, H., Qiao, J.: A self−organizing fuzzy neural network based on a growing−and−pruning algorithm. IEEE Trans. Fuzzy Syst. 18, 1129–1143 (2010)
Acknowledgements
This work was supported by National Science Foundation of China under Grants 61890930−5, 61903010, 62021003 and 62125301, Beijing Outstanding Young Scientist Program under Grant BJJWZYJH01201910005020, Beijing Natural Science Foundation under Grant KZ202110005009 and CAAI−Huawei MindSpore Open Fund under Grant CAAIXSJLJJ−2021−017A.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Han, H., Liu, Y., Zhang, L. et al. Knowledge Reconstruction for Dynamic Multi-objective Particle Swarm Optimization Using Fuzzy Neural Network. Int. J. Fuzzy Syst. 25, 1853–1868 (2023). https://doi.org/10.1007/s40815-023-01477-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40815-023-01477-2