Skip to main content
Log in

Intelligence Sampling Control Algorithm for T-S Fuzzy Networked Control Systems via Cloud Server Storage Method Under DoS Attack

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This work studies the \(H_{\infty }\) performance of T-S fuzzy networked control systems under denial-of-service (DoS) attacks. First, the weight coefficient is introduced to measure the damage to the control signal caused by DoS attacks. Then, novel looped Lyapunov-Krasovskii functions are constructed based on the fuzzy membership function, and the nonlinear problem of the system is considered under the premise of reducing the initial condition constraints. Next, the issue of finding the suitable sampling period is transformed into an optimization problem of finding the optimal sampling period to reduce sampling times. An intelligent sampling controller is designed to ensure the asymptotic stability of the system. Finally, the effectiveness of the proposed method is verified with a truck trailer model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Cao, L., Cheng, Z., Liu Y., Li, H.: Event-based adaptive NN fixed-time cooperative formation for multiagent systems. IEEE Trans Neural Netw Learn Syst (2022). https://doi.org/10.1109/TNNLS.2022.3210269.

  2. Lei, D., Han Q.L., Zhang, X.M.: Distributed secondary control for active power sharing and frequency regulation in islanded microgrids using an event-triggered communication mechanism. IEEE Trans Ind Info 15(7), 3910-3922 (2018)

  3. Iftikhar, A., Ge, X., Han, Q.L.: Communication-constrained active suspension control for networked in-wheel motor-driven electric vehicles with dynamic dampers. IEEE Trans Intell Veh (2022). https://doi.org/10.1109/TIV.2022.3160165

    Article  Google Scholar 

  4. Zhang, R., Wang, H., Park, J.H., He, P., Zeng, D., Xie, X.: Fuzzy secure control for nonlinear N-D parabolic PDE-ODE coupled systems under stochastic deception attacks. IEEE Trans Fuzzy Syst 30(8), 3347–3359 (2021)

    Article  Google Scholar 

  5. Hu, S., Yue, D., Xie, X., Chen, X., Yin, X.: Resilient event-triggered controller synthesis of networked control systems under periodic DoS jamming attacks. IEEE Trans Cybern 49(12), 4271–4281 (2018)

    Article  Google Scholar 

  6. Gu, Z., Shi, P., Yue, D., Ding, Z.: Decentralized adaptive event-triggered H filtering for a class of networked nonlinear interconnected systems. IEEE Trans Cybern 49(5), 1570–1579 (2019)

    Article  Google Scholar 

  7. Du, Z., Kao, Y., Karimi, H.R., Zhao, X.: Interval type-2 fuzzy sampled-data H control for nonlinear unreliable networked control systems. IEEE Trans Fuzzy Syst 28(7), 1434–1448 (2019)

    Article  Google Scholar 

  8. Wu, T., Xiong, L., Cao, J., Park, J.H.: Hidden markov model-based asynchronous quantized sampled-data control for fuzzy nonlinear Markov jump systems. Fuzzy Sets Syst 432, 89–110 (2022)

    Article  MathSciNet  Google Scholar 

  9. Cai, X., Wang, J., Shi, K., Zhong, S., Jiang, T.: Quantized dissipative control based on T-S fuzzy model for wind generation systems. ISA Trans 126, 533–544 (2022)

    Article  Google Scholar 

  10. Chen, X., Wang, Y., Hu, S.: Event-triggered quantized H control for networked control systems in the presence of denial-of-service jamming attacks. Nonlinear Anal Hybrid Syst 33, 265–281 (2019)

    MathSciNet  MATH  Google Scholar 

  11. Gu, Z., Ahn, C.K., Yue, D., Xie, X.: Event-triggered H filtering for T-S fuzzy-model-based nonlinear networked systems with multisensors against DoS attacks. IEEE Trans Cybern 52(6), 5311–5321 (2022)

    Article  Google Scholar 

  12. Cao, L., Pan, Y., Liang, H., Huang, T.: Observer-based dynamic event-triggered control for multiagent systems with time-varying delay. IEEE Trans Cybern (2022). https://doi.org/10.1109/TCYB.2022.3226873.

  13. Liu, Y., Tang, S., Liu, Y., Kong, Q., Wang, J.: Extended dissipative sliding mode control for nonlinear networked control systems via event-triggered mechanism with random uncertain measurement. Appl Math Comput 396, 125901 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhang, D., Ye, Z., Feng, G., Li, H.: Intelligent event-based fuzzy dynamic positioning control of nonlinear unmanned marine vehicles under DoS Attack. IEEE Trans Cybern (2021). https://doi.org/10.1109/TCYB.2021.3128170

    Article  Google Scholar 

  15. Tanaka, K., Wang, H.: Fuzzy control system design and analysis: a linear matrix inequality approach. Wiley-Interscience, New York (2001)

    Book  Google Scholar 

  16. Qiu, Y., Hua, C., Wang, Y.: Nonfragile sampled-Data control of TCS fuzzy systems with time delay. IEEE Trans Fuzzy Syst 30(8), 3202–3210 (2022). https://doi.org/10.1109/TFUZZ.2021.3107748

    Article  Google Scholar 

  17. Wu, Z., Shi, P., Su, H., Lu, R.: Dissipativity-based sampled-data fuzzy control design and its application to Truck-Trailer system. IEEE Trans Fuzzy Syst 23(5), 1669–1679 (2015)

    Article  Google Scholar 

  18. Kuppusamy, S., Joo, Y.H.: Stabilization criteria for TCS fuzzy systems with multiplicative sampled-data control gain uncertainties. IEEE Trans Fuzzy Syst 30(10), 4082–4092 (2022)

    Article  Google Scholar 

  19. Zhang, Z., Dong, J.: Sampled-data containment control for Takagi-Sugeno fuzzy multiagent systems with packet losses. Int J Robust Nonlinear Control 30(18), 8362–8381 (2020)

    Article  MathSciNet  Google Scholar 

  20. Cai, X., Shi, K., She, K., Zhong, S., Tang, Y.: Quantized sampled-data control tactic for T-S fuzzy NCS under stochastic cyber-attacks and its application to truck-trailer system. IEEE Trans Vehicular Technol 71(7), 7023–7032 (2022)

    Article  Google Scholar 

  21. Cai, X., Shi, K., She, K., Zhong, S., Soh, Y.C., Yu, Y.: Reliable sampling mechanism for Takagi-Sugeno fuzzy NCSs under deception cyber-attacks for application of inverted pendulum system. IEEE Trans Reliab https://doi.org/10.1109/TR.2022.3215075

  22. Wu, Y., Rong, B., Salehian, K., Gagnon, G.: Cloud transmission: A new spectrum-reuse friendly digital terrestrial broadcasting transmission system. IEEE Trans Broadcasting 58(3), 329–337 (2012)

    Article  Google Scholar 

  23. Yuan, H., Xia, Y., Lin, M., Yang, H., Gao, R.: Dynamic pricing-based resilient strategy design for cloud control system under jamming attack. IEEE Trans Syst Man Cybern Syst 50(1), 111–122 (2020)

    Article  Google Scholar 

  24. Yang, J., Wang, H., Lv, Z., Wei, W., Song, H., Kantarci, M., Kantarci, B., He, S.: Multimedia recommendation and transmission system based on cloud platform. Future Gener Comput Syst 70, 94–103 (2017)

    Article  Google Scholar 

  25. Yang, H., Ju, S., Xia, Y., Zhang, J.: Predictive cloud control for networked multiagent systems with quantized signals under DoS attacks. IEEE Trans Syst Man Cybern Syst 51(2), 1345–1353 (2021)

    Article  Google Scholar 

  26. Plevris, V., Papadrakakis, M.: A hybrid particle swarm-gradient algorithm for global structural optimization. Comput Aided Civil Infrastruct Eng 26, 48–68 (2011)

    Google Scholar 

  27. Liu, S., Vicente, L.N.: The stochastic multi-gradient algorithm for multi-objective optimization and its application to supervised machine learning. Anna Operat Res 60(5), 1–30 (2021)

    Google Scholar 

  28. Wang, Y., Karimi, H.R., Lam, H.K., Shen, H.: An improved result on exponential stabilization of sampled-data fuzzy systems. IEEE Trans Fuzzy Syst 26(6), 3875–3883 (2018)

    Article  Google Scholar 

  29. Cai X., Shi K., She K., Zhong, S., Soh, Y.C., Yu, Y., Performance error estimation and elastic integral event triggering mechanism design for T-S fuzzy networked control system under DoS attacks. IEEE Trans Fuzzy Syst (2022). https://doi.org/10.1109/TFUZZ.2022.3199817.

  30. Wu, Z., Shi, P., Su, H., Lu, R.: Dissipativity-based sampled-data fuzzy control design and its application to truck-trailer system. IEEE Trans Fuzzy Syst 23(5), 1669–1679 (2015)

    Article  Google Scholar 

  31. Ge, C., Park, J.H., Hua, C., Guan, X.: Dissipativity analysis for T-S fuzzy system under memory sampled-data control. IEEE Trans Cybern 2019, 1-9 (2019)

  32. Gu, Z., Sun, X., Lam, H.K., Yue, D., Xie, X.: Event-based secure control of T-S fuzzy based 5-DOF active semi-vehicle suspension systems subject to DoS attacks. IEEE Trans Fuzzy Syst 30(6), 2032–2043 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities, Southwest Minzu University (2019NQN07), Opening Fund of Geomathematics Key Laboratory of Sichuan Province (scsxdz2018zd04 and scsxdz2020zd01), National Nature Science Foundation (62073270 and 62206168), Sichuan Science and Technology Program under Grant Nos. 21YYJC0469 and 23ZDYF0645

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Cai.

Appendices

Appendix 1

$$\begin{aligned} \theta _{1}= & {} \int ^{t}_{t_{k}}\frac{x^T}{t-t_{k}}ds,\ \theta _{4}=\int ^{t_{k+1}}_{t}\int ^{t_{k+1}}_{u}\frac{x^T}{(t_{k+1}-t)^2}duds,\\ \theta _{2}= & {} \int ^{t}_{t_{k}}\int ^{t_{k}}_{u}\frac{x^T}{(t-t_{k})^2}duds,\ \theta _{3}=\int ^{t_{k+1}}_{t}\frac{x^T}{t_{k+1}-t}ds,\\ \alpha= & {} \, \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,col\{x,\underline{h}_{k}\theta _{1},\underline{h}^2_{k}\theta _{2}, \underline{h}_{k}\theta _{3},\overline{h}^2_{k}\theta _{4}\},\\ \varepsilon= & {} \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,col\{x,x_{d},x_{\bar{d}}\},\overline{h}_{k}=t_{k+1}-t,\\ \underline{h}_{k}= &\,\,\,\,\,\,\, {} \,\,\,t-t_{k},\theta (t,t_{k})=col\{\theta _{1},\theta _{2},\theta _{3},\theta _{4}\},\\ \xi= & {} \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,col\{x,x_{d},x_{\bar{d}},\dot{x},\dot{x}_{d},\dot{x}_{\bar{d}},\theta _{k},x_{k},x_{k+1},\omega \}, \end{aligned}$$

Appendix 2

$$\begin{aligned} \varGamma= & {} \varXi _{1}+\varXi _{2}+\varXi _{3}+\text {sym}\{\eta \varphi \}+z^Tz-\gamma ^2\omega ^T\omega ,\\ \varXi _{1}= & {} \sum \limits _{i = 1}^r\dot{\psi }_{i}(\delta )\varPhi ^T_{1}P_{i}\varPhi _{1}+\text {sym}\{\sum \limits _{i = 1}^r\psi _{i}(\delta )\varPhi ^T_{1}P_{i}\varPhi _{1}\},\\ \varXi _{2}= & {} \sum \limits _{i = 1}^r\dot{\psi }_{i}(\delta )\varPhi ^T_{5}S_{i}\varPhi _{6}+\sum \limits _{i = 1}^r\psi _{i}(\delta )e^T_{4}S_{i}\varPhi _{6}\\{} & {} -\sum \limits _{i = 1}^r\psi _{i}(\delta )\varPhi ^T_{5}S_{i}e_{4}+\sum \limits _{i = 1}^r\dot{\psi }_{i}(\delta )\overline{h}_{k}\underline{h}_{k}\varPhi ^T_{3}R_{i}\varPhi _{3}\\{} & {} +\sum \limits _{i = 1}^r\psi _{i}(\delta )\overline{h}_{k}\varPhi ^T_{3}R_{i}\varPhi _{3}-\sum \limits _{i = 1}^r\psi _{i}(\delta )\underline{h}_{k}\varPhi ^T_{3}R_{i}\varPhi _{3}\\{} & {} +\text {sym}\{\sum \limits _{i = 1}^r\psi _{i}(\delta )\overline{h}_{k}\underline{h}_{k}\varPhi ^T_{3}R_{i}\varPhi _{4}\},\\ \varXi _{3}= & {} \sum \limits _{i = 1}^r\psi _{i}(\delta )\overline{h}_{k}e^T_{4}Q_{i}e_{4}+\sum \limits _{i = 1}^r\psi _{i}(\delta )\underline{h}_{k}e^T_{4}U_{i}e_{4}\\{} & {} +\textrm{sym}\{W^T_{1}L_{1}\varPhi _{5}+W^T_{1}L_{2}\varPhi _{7}+W^T_{1}L_{3}\varPhi _{8}\}\\{} & {} +\textrm{sym}\{W^T_{2}L_{5}\varPhi _{9}-W^T_{2}L_{4}\varPhi _{5}+W^T_{2}L_{6}\varPhi _{10}\},\\ \varPhi _{1}= & {} col\{e_{1},\underline{h}_{k}e_{7},\underline{h}^2_{k}e_{8},\overline{h}_{k}e_{9},\overline{h}^2_{k}e_{10}\},\\ \varPhi _{2}= & {} col\{e_{4},e_{1},\underline{h}_{k}(e_{1}-e_{7}),-e_{1},\overline{h}_{k}(e_{1}-e_{9})\},\\ \varPhi _{3}= & {} \{e_{1},e_{2},e_{3}\},\varPhi _{4}=\{e_{4},(1-\dot{d})e_{5},e_{6}\},\\ \varPhi _{5}= & {} col\{e_{1}-e_{11}\},\varPhi _{6}=col\{e_{12}-e_{1}\},\\ \varPhi _{7}= & {} col\{e_{1}+e_{11}-2e_{7}\},\varPhi _{9}=col\{e_{11}+e_{1}-2e_{9}\},\\ \varPhi _{8}= & {} col\{e_{1}-e_{11}+6e_{7}-12e_{8}\},\\ \varPhi _{10}= & {} col\{e_{11}-e_{1}+6e_{9}-12e_{10}\},\\ W_{1}= & {} col\{e_{1},e_{11},e_{7},e_{8}\},W_{2}=col\{e_{12},e_{1},e_{9},e_{10}\},\\ \overline{Q}_{i}= & {} \sum \limits _{i = 1}^r\psi _{i}(\delta )Q_{i}-\ell _{i}\overline{h}_{k}Q_{i},\\ \overline{U}_{i}= & {} \ell _{i}\underline{h}_{k}U_{i}+\sum \limits _{i = 1}^r\psi _{i}(\delta )U_{i},\\ \eta= & {} e^T_{1}G_{1}+e^T_{11}G_{2}+e^T_{4}G_{3},\\ \varphi= & {} A_{1i}e_{1}+C_{1i}e_{5}+B_{1i}K_{j1}e_{11}\\{} & {} +(1+\lambda )B_{1i}K_{j2}e_{5}+D_{1i}e_{13}-e_{4},\\ z= & {} A_{2i}e_{1}+C_{2i}e_{5}+B_{2i}K_{j1}e_{11}\\{} & {} +(1+\lambda )B_{2i}K_{j2}e_{5}+D_{2i}e_{13}-e_{4},\\ e_{i}= & {} [0_{n\times (i-1)n}\quad I_{n\times n}\quad 0_{n\times (13-i)}],\quad i=1,2,\cdot \cdot \cdot ,13. \end{aligned}$$

Appendix 3

$$\begin{aligned} \bar{\varGamma }= & {} \bar{\varXi }_{1}+\bar{\varXi }_{2}+\bar{\varXi }_{3}+\text {sym}\{\bar{\eta }\bar{\varphi }\}+\bar{z}^T\bar{z}-\gamma ^2\omega ^T\omega ,\\ \bar{\varXi }_{1}= & {} \sum \limits _{i = 1}^r\dot{\psi }_{i}(\delta )\varPhi ^T_{1}\bar{P}_{i}\varPhi _{1}+\text {sym}\{\sum \limits _{i = 1}^r\psi _{i}(\delta )\varPhi ^T_{1}\bar{P}_{i}\varPhi _{1}\},\\ \bar{\varXi }_{2}= & {} \sum \limits _{i = 1}^r\dot{\psi }_{i}(\delta )\varPhi ^T_{5}\bar{S}_{i}\varPhi _{6}+\sum \limits _{i = 1}^r\psi _{i}(\delta )e^T_{4}\bar{S}_{i}\varPhi _{6}\\{} & {} -\sum \limits _{i = 1}^r\psi _{i}(\delta )\varPhi ^T_{5}\bar{S}_{i}e_{4}+\sum \limits _{i = 1}^r\dot{\psi }_{i}(\delta )\overline{h}_{k}\underline{h}_{k}\varPhi ^T_{3}\bar{R}_{i}\varPhi _{3}\\{} & {} +\sum \limits _{i = 1}^r\psi _{i}(\delta )\overline{h}_{k}\varPhi ^T_{3}\bar{R}_{i}\varPhi _{3}-\sum \limits _{i = 1}^r\psi _{i}(\delta )\underline{h}_{k}\varPhi ^T_{3}\bar{R}_{i}\varPhi _{3}\\{} & {} +\text {sym}\{\sum \limits _{i = 1}^r\psi _{i}(\delta )\overline{h}_{k}\underline{h}_{k}\varPhi ^T_{3}\bar{R}_{i}\varPhi _{4}\},\\ \bar{\varXi }_{3}= & {} \sum \limits _{i = 1}^r\psi _{i}(\delta )\overline{h}_{k}e^T_{4}\bar{Q}_{i}e_{4}+\sum \limits _{i = 1}^r\psi _{i}(\delta )\underline{h}_{k}e^T_{4}\bar{U}_{i}e_{4}\\{} & {} +\textrm{sym}\{W^T_{1}L_{1}\varPhi _{5}+W^T_{1}L_{2}\varPhi _{7}+W^T_{1}L_{3}\varPhi _{8}\}\\{} & {} +\textrm{sym}\{W^T_{2}L_{5}\varPhi _{9}-W^T_{2}L_{4}\varPhi _{5}+W^T_{2}L_{6}\varPhi _{10}\},\\ \bar{\overline{Q}}_{i}= & {} \sum \limits _{i = 1}^r\psi _{i}(\delta )\bar{Q}_{i}-\ell _{i}\overline{h}_{k}\bar{Q}_{i},\\ \bar{\overline{U}}_{i}= & {} \ell _{i}\underline{h}_{k}\bar{U}_{i}+\sum \limits _{i = 1}^r\psi _{i}(\delta )\bar{U}_{i},\\ \bar{\eta }= & {} e^T_{1}+\kappa _{1}e^T_{11}+\kappa _{2}e^T_{4},\\ \bar{\varphi }= & {} A_{1i}Xe_{1}+C_{1i}Xe_{5}+B_{1i}Y_{j1}e_{11}\\{} & {} +(1+\lambda )B_{1i}Y_{j2}e_{5}+D_{1i}Xe_{13}-Xe_{4},\\ z= & {} A_{2i}Xe_{1}+C_{2i}Xe_{5}+B_{2i}Y_{1j}e_{11}\\{} & {} +(1+\lambda )B_{2i}Y_{2j}e_{5}+D_{2i}Xe_{13}-Xe_{4}. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Cai, X., Shi, K. et al. Intelligence Sampling Control Algorithm for T-S Fuzzy Networked Control Systems via Cloud Server Storage Method Under DoS Attack. Int. J. Fuzzy Syst. 25, 2464–2475 (2023). https://doi.org/10.1007/s40815-023-01504-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-023-01504-2

Keywords