Skip to main content
Log in

Fixed-Time Adaptive Fuzzy Anti-Synchronization Control of Hyperchaotic Rössler System Based on Backstepping Method

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper investigates the fixed-time anti-synchronization problem for a class of hyperchaotic Rössler systems with unknown parameters. Firstly, the backstepping method is used to design controllers. Secondly, the adaptive fuzzy logic systems are introduced to deal with the unknown functions in hyperchaotic Rössler systems. Then, combined with fixed-time theory to achieve the anti-synchronization of the response system and the drive system. It is shown that the proposed control scheme can guarantee that all the state signals of error system are bounded. Finally, theoretical analysis and simulation results demonstrate that the effectiveness of the control scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963)

    MathSciNet  MATH  Google Scholar 

  2. Ramya, L.S., Sakthivel, R., Ahn, C.K., Ren, Y.: Reliable resilient finite-time control for stabilization of hyperchaotic fractional-order systems. IEEE Trans. Circuits Syst. II Express Briefs 66(9), 1537–1541 (2018)

    Google Scholar 

  3. Hu, Z.Y., Chan, C.K.: A 7-D hyperchaotic system-based encryption scheme for secure fast-OFDM-PON. J. Lightwave Technol. 36(16), 3373–3381 (2018)

    Google Scholar 

  4. Li, H.Z., Hua, Z.Y., Bao, H., Zhu, L., Chen, M., Bao, B.C.: Two-dimensional memristive hyperchaotic maps and application in secure communication. IEEE Trans. Ind. Electron. 68(10), 9931–9940 (2020)

    Google Scholar 

  5. Li, Y.X., Tang, W.K.S., Chen, G.R.: Generating hyperchaos via state feedback control. Int. J. Bifurc. Chaos 15(10), 3367–3375 (2005)

    Google Scholar 

  6. Zhou, X., Wu, Y., Li, Y., Xue, H.: Adaptive control and synchronization of a new modified hyperchaotic Lü system with uncertain parameters. Chaos Solitons Fractals 39(5), 2477–2483 (2009)

    MATH  Google Scholar 

  7. Rössler, O.E.: An equation for hyperchaos. Phys. Lett. A 71(2–3), 155–157 (1979)

    MathSciNet  MATH  Google Scholar 

  8. Kapitaniak, T., Chua, L.O.: Hyperchaotic attractors of unidirectionally-coupled Chua’s circuits. Int. J. Bifurc. Chaos 4(2), 471 (1994)

    MathSciNet  MATH  Google Scholar 

  9. Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64(8), 821–824 (1990)

    MathSciNet  MATH  Google Scholar 

  10. Yu, Y.G., Zhang, S.C.: Adaptive backstepping synchronization of uncertain chaotic system. Chaos Solitons Fractals 21(3), 643–649 (2004)

    MATH  Google Scholar 

  11. \(\acute{A}\) Lvarez, G., Montoya, F., Pastor, G., Romera, M.: Breaking a secure communication scheme based on the phase synchronization of chaotic systems. Chaos Interdiscip. J. Nonlinear Sci. 14(2), 274–278 (2004)

  12. Li, A.L., Ye, X.L.: Finite-time anti-synchronization for delayed inertial neural networks via the fractional and polynomial controllers of time variable. AIMS Math. 6(8), 8173–8190 (2021)

    MathSciNet  MATH  Google Scholar 

  13. Meng, X., Wu, Z.T., Gao, C.C., Jiang, B.P., Karimi, H.R.: Finite-time projective synchronization control of variable-order fractional chaotic systems via sliding mode approach. IEEE Trans. Circuits Syst. II Express Briefs 68(7), 2503–2507 (2021)

    Google Scholar 

  14. Meng, J., Wang, X.Y.: Robust anti-synchronization of a class of delayed chaotic neural networks. Chaos Interdiscip. J. Nonlinear Sci. 17(2) (2007)

  15. Vaidyanathan, S., Rajagopal, K.: Anti-synchronization of Li and T chaotic systems by active nonlinear control. Adv. Comput. Inf. Technol. 198, 175–184 (2011)

    Google Scholar 

  16. Li, H.L., Jiang, Y.L., Wang, Z.L.: Anti-synchronization and intermittent anti-synchronization of two identical hyperchaotic Chua systems via impulsive control. Nonlinear Dyn. 79(2), 919–925 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Vaidyanathan, S., Volos, C.K., Rajagopal, K., Kyprianidis, I.M., Stouboulos, I.N.: Adaptive backstepping controller design for the anti-synchronization of identical WINDMI chaotic systems with unknown parameters and its SPICE implementation. J. Eng. Sci. Technol. Rev. 8(2), 74–82 (2015)

    Google Scholar 

  18. Chauhan, M.V., Rza, M.C., Mehta, M.S.: DSC design for synchronization and anti- synchronization of arneodo chaotic system. Int. J. Res. Advent Technol. 2(5) (2014)

  19. Kristic, M., Kokotovic, P.V., Kanellakopoulos, I.: Nonlinear and adaptive control design. Wiley, New York (1995)

    Google Scholar 

  20. Luo, S.H., Hu, X.C., Zhao, L., Li, S.B.: Event-triggered neural adaptive backstepping control of the K chaotic PMSGs coupled system. Int. J. Electr. Power Energy Syst. (2022). https://doi.org/10.1016/j.ijepes.2021.107475

    Article  Google Scholar 

  21. Tu, J.J., He, H.L., Xiong, P.: Adaptive backstepping synchronization between chaotic systems with unknown Lipschitz constant. Appl. Math. Comput. 236, 10–18 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Pal, P., Mukherjee, V., Alemayehu, H., Jin, G.G., Feyisa, G.: Generalized adaptive backstepping sliding mode control for synchronizing chaotic systems with uncertainties and disturbances. Math. Comput. Simul. 190, 793–807 (2021)

    MathSciNet  MATH  Google Scholar 

  23. Li, D.J., Lu, S.M., Liu, L.: Adaptive NN cross backstepping control for nonlinear systems with partial time-varying state constraints and its applications to hyperchaotic systems. IEEE Trans. Syst. Man Cybern. Syst. 51(5), 2821–2832 (2019)

    Google Scholar 

  24. Hu, X., Long, Y., Li, T.S., Chen, C.L.P.: Adaptive fuzzy backstepping asymptotic disturbance rejection of multiagent systems with unknown model dynamics. IEEE Trans. Fuzzy Syst. 30(11), 4775–4787 (2022)

    Google Scholar 

  25. Wang, N., Tao, F.Z., Fu, Z.M., Song, S.Z.: Adaptive fuzzy control for a class of stochastic strict feedback high-order nonlinear systems with full-state constraints. IEEE Trans. Syst. Man Cybern. Syst. 52(1), 205–213 (2020)

    Google Scholar 

  26. Li, R.C., Zhang, X.F.: Adaptive sliding mode observer design for a class of T-S fuzzy descriptor fractional order systems. IEEE Trans. Fuzzy Syst. 28(9), 1951–1959 (2020)

    Google Scholar 

  27. Zhang, X.F., Huang, W.K., Wang, Q.G.: Robust H-\(\infty\) adaptive sliding mode fault tolerant control for T-S fuzzy fractional order systems with mismatched disturbances. IEEE Trans. Circuit Syst. I Regul. Papers 68(3), 1297–1307 (2021)

    MathSciNet  Google Scholar 

  28. Ha, S.M., Liu, H., Li, S.G., Liu, A.J.: Backstepping-based adaptive fuzzy synchronization control for a class of fractional-order chaotic systems with input saturation. Int. J. Fuzzy Syst. 21(5), 1571–1584 (2019)

    MathSciNet  Google Scholar 

  29. Yu, J.P., Chen, B., Yu, H.S., Gao, J.W.: Adaptive fuzzy tracking control for the chaotic permanent magnet synchronous motor drive system via backstepping. Nonlinear Anal. Real World Appl. 12(1), 671–681 (2011)

    MathSciNet  MATH  Google Scholar 

  30. Weiss, L., Infante, E.F.: Finite time stability under perturbing forces and on product spaces. IEEE Trans. Autom. Control 12(1), 54–59 (1967)

    MathSciNet  MATH  Google Scholar 

  31. Bhat, S.P., Bernstein, D.S.: Continuous finite-time stabilization of the translational and rotational double integrators. IEEE Trans. Autom. Control 43(5), 678–682 (1998)

    MathSciNet  MATH  Google Scholar 

  32. Bhat, S.P., Bernstein, D.S.: Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38(3), 751–766 (2000)

    MathSciNet  MATH  Google Scholar 

  33. Li, H.Y., Hu, Y.A.: Robust sliding-mode backstepping design for synchronization control of cross-strict feedback hyperchaotic systems with unmatched uncertainties. Commun. Nonlinear Sci. Numer. Simul. 16(10), 3904–3913 (2011)

    MathSciNet  MATH  Google Scholar 

  34. Dalir, M., Bigdeli, N.: An adaptive neuro-fuzzy backstepping sliding mode controller for finite time stabilization of fractional-order uncertain chaotic systems with time-varying delays. Int. J. Mach. Learn. Cybern. 12(7), 1949–1971 (2021)

    Google Scholar 

  35. Vincent, U.E., Guo, R.: Finite-time synchronization for a class of chaotic and hyperchaotic systems via adaptive feedback controller. Phys. Lett. A 375(24), 2322–2326 (2011)

    MATH  Google Scholar 

  36. Yin, L.J., Deng, Z.H., Huo, B.Y., Xia, Y.Q.: Finite-time synchronization for chaotic gyros systems with terminal sliding mode control. IEEE Trans. Syst. Man Cybern. Syst. 49(6), 1131–1140 (2017)

    Google Scholar 

  37. Polyakov, A.: Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans. Autom. Control 57(8), 2106–2110 (2012)

    MathSciNet  MATH  Google Scholar 

  38. Ni, J.K., Liu, L., Liu, C.X., Hu, X.Y., Shen, T.S.: Fixed-time dynamic surface high-order sliding mode control for chaotic oscillation in power system. Nonlinear Dyn. 86(1), 401–420 (2016)

    MATH  Google Scholar 

  39. Ai, Y.D., Wang, H.Q.: Fixed-time anti-synchronization of unified chaotic systems via adaptive backstepping approach. IEEE Trans. Circuits Syst. II Express Briefs (2022). https://doi.org/10.1109/TCSII.2022.3179377

    Article  Google Scholar 

  40. Rössler, O.E.: Chaos in abstract kinetics: two prototypes. Bull. Math. Biol. 39(2), 275–289 (1977)

    MathSciNet  MATH  Google Scholar 

  41. Hassan, M.F.: Synchronization of uncertain constrained hyperchaotic systems and chaos-based secure communications via a novel decomposed nonlinear stochastic estimator. Nonlinear Dyn. 83(4), 2183–2211 (2016)

    MathSciNet  MATH  Google Scholar 

  42. Li, R.H., Xu, W., Li, S.: Anti-synchronization on autonomous and non-autonomous chaotic systems via adaptive feedback control. Chaos Solitons Fractals 40(3), 1288–1296 (2009)

    MathSciNet  MATH  Google Scholar 

  43. Chen, C., Li, L.X., Peng, H.P., Yang, Y.X.: Fixed-time synchronization of inertial memristor-based neural networks with discrete delay. Neural Netw. 109, 81–89 (2018)

    MATH  Google Scholar 

  44. Wang, L.X., Mendel, J.M.: Fuzzy basis functions, universal approximation, and orthogonal least-squares learning. IEEE Trans. Neural Netw. 3(5), 807–814 (1992)

    Google Scholar 

  45. Zuo, Z.Y., Tie, L.: Distributed robust finite-time nonlinear consensus protocols for multi-agent systems. Int. J. Syst. Sci. 47(6), 1–10 (2014)

    MathSciNet  Google Scholar 

  46. Zhu, Z., Xia, Y.Q., Fu, M.Y.: Attitude stabilization of rigid spacecraft with finite-time convergence. Int. J. Robust Nonlinear Control 21(6), 686–702 (2011)

    MathSciNet  MATH  Google Scholar 

  47. Qian, C.J., Lin, W.: Non-lipschitz continuous stabilizers for nonlinear systems with uncontrollable unstable linearization. Syst. Control Lett. 42(3), 185–200 (2001)

    MathSciNet  MATH  Google Scholar 

  48. Ling, S., Wang, H.Q., Liu, P.X.: Fixed-time adaptive event-triggered tracking control of uncertain nonlinear systems. Nonlinear Dyn. 100, 3381–3397 (2020)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 62173046, 61773072 and U21A20483, and in part by the Education Department of Liaoning Province under the general project research under Grant No. LJ2020001. (Corresponding author: Huanqing Wang).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huanqing Wang.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ai, Y., Feng, Z. & Wang, H. Fixed-Time Adaptive Fuzzy Anti-Synchronization Control of Hyperchaotic Rössler System Based on Backstepping Method. Int. J. Fuzzy Syst. 25, 2501–2513 (2023). https://doi.org/10.1007/s40815-023-01536-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-023-01536-8

Keywords

Navigation