Skip to main content
Log in

Probabilistic Linguistic Group Decision-Making Based on Evidential Reasoning Considering Correlations Between Linguistic Terms

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

In recent years, evidential reasoning (ER) has provided an effective means to deal with uncertain information depicted by probabilistic linguistic terms sets (PLTSs) during fusion. However, it is worth noting that due to the differences in decision makers’ preferences and understanding of linguistic terms, there is a significant difference between the level of ER and the term in PLTSs, which hinders further development of ER in PLTSs. To fill this gap, this study modifies the existing ER algorithm with linguistic correlation and introduces it to multiple attribute group decision-making (MAGDM) problems within PLTSs. First, the correlations between different linguistic terms are defined based on the expressive preferences of decision-makers. Second, the correlation between different linguistic terms is integrated into the original ER to reduce the contradiction caused by expressive preferences. Moreover, linguistic correlation is also involved in the calculation of reliability to adjust the distance measure, which can reduce the unreliability caused by the preferences expressed by decision-makers. Then, nonlinear programming models are conducted to drive expert reliability. Thereafter, the modified ER algorithm is employed to integrate expert opinions into a comprehensive evaluation of alternatives. Finally, an illustrative example of an industry evaluation problem is conducted to verify the robustness and validity of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data used in this study is availability from Tables 1 and 2.

References

  1. Chen, T., He, S.-S., Wang, J.-Q., et al.: Novel operations for linguistic neutrosophic sets on the basis of Archimedean copulas and co-copulas and their application in multi-criteria decision-making problems. J. Intell. Fuzzy Syst. 37, 2887–2912 (2019). https://doi.org/10.3233/JIFS-190041

    Article  Google Scholar 

  2. Li, Y.-Y., Wang, J.-Q., Wang, T.-L.: A linguistic neutrosophic multi-criteria group decision-making approach with edas method. Arab. J. Sci. Eng. 44(3), 2737–2749 (2019). https://doi.org/10.1007/s13369-018-3487-5

    Article  Google Scholar 

  3. Ren, P., Xu, Z., Wang, X., et al.: Group decision making with hesitant fuzzy linguistic preference relations based on modified extent measurement. Expert Syst. Appl. 171, 114235 (2021). https://doi.org/10.1016/j.eswa.2020.114235

    Article  Google Scholar 

  4. Rodríguez, R.M., Labella, Á., Sesma-Sara, M., et al.: A cohesion-driven consensus reaching process for large scale group decision making under a hesitant fuzzy linguistic term sets environment. Comput. Ind. Eng. 155, 107158 (2021). https://doi.org/10.1016/j.cie.2021.107158

    Article  Google Scholar 

  5. Wang, X.K., Zhang, H.Y., Wang, J.Q., et al.: Extended TODIM-PROMETHEE II method with hesitant probabilistic information for solving potential risk evaluation problems of water resource carrying capacity. Expert Syst. 38(4), e12681 (2021). https://doi.org/10.1111/exsy.12681

    Article  MathSciNet  Google Scholar 

  6. Nie, R.-X., Wang, J.-Q.: Prospect theory-based consistency recovery strategies with multiplicative probabilistic linguistic preference relations in managing group decision making. Arab. J. Sci. Eng. (2019). https://doi.org/10.1007/s13369-019-04053-9

    Article  Google Scholar 

  7. Luo, S.-Z., Zhang, H.-Y., Wang, J.-Q., et al.: Group decision-making approach for evaluating the sustainability of constructed wetlands with probabilistic linguistic preference relations. J. Oper. Res. Soc. 70(12), 2039–2055 (2019). https://doi.org/10.1080/01605682.2018.1510806

    Article  Google Scholar 

  8. Jiang, L., Liao, H.: A nondominated selection procedure with partially consistent non-reciprocal probabilistic linguistic preference relations and its application in social donation channel selection under the COVID-19 outbreaks. Inf. Sci. 564, 416–429 (2021). https://doi.org/10.1016/j.ins.2021.02.044

    Article  MathSciNet  MATH  Google Scholar 

  9. Wang, X.-K., Wang, S.-H., Zhang, H.-Y., et al.: The recommendation method for hotel selection under traveller preference characteristics: a cloud-based multi-criteria group decision support model. Group Decis. Negot. 30(6), 1433–1469 (2021). https://doi.org/10.1007/s10726-021-09735-0

    Article  Google Scholar 

  10. Wang, X., Wang, J., Zhang, H.: Distance-based multicriteria group decision-making approach with probabilistic linguistic term sets. Expert Syst. 36(2), e12352 (2019). https://doi.org/10.1111/exsy.12352

    Article  Google Scholar 

  11. Chen, S.-X., Wang, J.-Q., Wang, T.-L.: Cloud-based ERP system selection based on extended probabilistic linguistic MULTIMOORA method and Choquet integral operator. Comput. Appl. Math. 38(2), 88 (2019). https://doi.org/10.1007/s40314-019-0839-z

    Article  MathSciNet  MATH  Google Scholar 

  12. Gao, H., Ju, Y., Zeng, X.-J., et al.: Satisfaction-driven consensus model for social network MCGDM with incomplete information under probabilistic linguistic trust. Comput. Ind. Eng. 154, 107099 (2021). https://doi.org/10.1016/j.cie.2021.107099

    Article  Google Scholar 

  13. Tian, Z.-P., Nie, R.-X., Wang, J.-Q.: Consistency and consensus improvement models driven by a personalized normalization method with probabilistic linguistic preference relations. Inf. Fusion 69, 156–176 (2021). https://doi.org/10.1016/j.inffus.2020.12.005

    Article  Google Scholar 

  14. Xu, Z., He, Y., Wang, X.: An overview of probabilistic-based expressions for qualitative decision-making: techniques, comparisons and developments. Int. J. Mach. Learn. Cybern. 10, 1513–1528 (2019). https://doi.org/10.1007/s13042-018-0830-9

    Article  Google Scholar 

  15. He, S.-S., Wang, Y.-T., Wang, J.-Q., et al.: A novel risk assessment model based on failure mode and effect analysis and probabilistic linguistic ELECTRE II method. J. Intell. Fuzzy Syst. (2020). https://doi.org/10.3233/JIFS-191398

    Article  Google Scholar 

  16. Gao, J., Guo, F., Li, X., et al.: Risk assessment of offshore photovoltaic projects under probabilistic linguistic environment. Renew. Energy 163, 172–187 (2021). https://doi.org/10.1016/j.renene.2020.08.110

    Article  Google Scholar 

  17. Peng, H.-G., Zhang, H.-Y., Wang, J.-Q.: Cloud decision support model for selecting hotels on TripAdvisor.com with probabilistic linguistic information. Int. J. Hosp. Manag. 68, 124–138 (2018). https://doi.org/10.1016/j.ijhm.2017.10.001

    Article  Google Scholar 

  18. Liu, P., Teng, F.: Probabilistic linguistic TODIM method for selecting products through online product reviews. Inf. Sci. 485, 441–455 (2019). https://doi.org/10.1016/j.ins.2019.02.022

    Article  Google Scholar 

  19. Xiao, F., Wang, J.-Q.: Multistage decision support framework for sites selection of solar power plants with probabilistic linguistic information. J. Clean. Prod. 230, 1396–1409 (2019). https://doi.org/10.1016/j.jclepro.2019.05.138

    Article  Google Scholar 

  20. Peng, H.-G., Wang, J.-Q., Zhang, H.-Y.: Multi-criteria outranking method based on probability distribution with probabilistic linguistic information. Comput. Ind. Eng. 141, 106318 (2020). https://doi.org/10.1016/j.cie.2020.106318

    Article  Google Scholar 

  21. Song, C., Wang, X.-K., Cheng, P.-F., et al.: SACPC: a framework based on probabilistic linguistic terms for short text sentiment analysis. Knowl. Based Syst. (2020). https://doi.org/10.1016/j.knosys.2020.105572

    Article  Google Scholar 

  22. Pang, Q., Wang, H., Xu, Z.: Probabilistic linguistic term sets in multi-attribute group decision making. Inf. Sci. 369, 128–143 (2016). https://doi.org/10.1016/j.ins.2016.06.021

    Article  Google Scholar 

  23. Gao, J., Xu, Z., Liang, Z., et al.: Expected consistency-based emergency decision making with incomplete probabilistic linguistic preference relations. Knowl. Based Syst. 176, 15–28 (2019). https://doi.org/10.1016/j.knosys.2019.03.020

    Article  Google Scholar 

  24. Wang, P., Liu, P., Chiclana, F.: Multi-stage consistency optimization algorithm for decision making with incomplete probabilistic linguistic preference relation. Inf. Sci. 556, 361–388 (2021). https://doi.org/10.1016/j.ins.2020.10.004

    Article  MathSciNet  MATH  Google Scholar 

  25. Jian-Bo, Y., Singh, M.G.: An evidential reasoning approach for multiple-attribute decision making with uncertainty. IEEE Trans. Syst. Man Cybern. 24(1), 1–18 (1994). https://doi.org/10.1109/21.259681

    Article  Google Scholar 

  26. Yang, J.-B.: Rule and utility based evidential reasoning approach for multiattribute decision analysis under uncertainties. Eur. J. Oper. Res. 131(1), 31–61 (2001). https://doi.org/10.1016/S0377-2217(99)00441-5

    Article  MathSciNet  MATH  Google Scholar 

  27. Yang, J.-B., Xu, D.-L.: On the evidential reasoning algorithm for multiple attribute decision analysis under uncertainty. IEEE T. Syst. Man Cybern. A 32(3), 289–304 (2002). https://doi.org/10.1109/TSMCA.2002.802746

    Article  Google Scholar 

  28. Zhou, H., Wang, J.-Q., Zhang, H.-Y., et al.: Linguistic hesitant fuzzy multi-criteria decision-making method based on evidential reasoning. Int. J. Syst. Sci. 47(2), 314–327 (2016). https://doi.org/10.1080/00207721.2015.1042089

    Article  MathSciNet  MATH  Google Scholar 

  29. Liu, P., Zhang, X.: Approach to multi-attributes decision making with intuitionistic linguistic information based on dempster-shafer evidence theory. IEEE Access 6, 52969–52981 (2018). https://doi.org/10.1109/ACCESS.2018.2869844

    Article  Google Scholar 

  30. Zheng, H., Deng, Y.: Evaluation method based on fuzzy relations between Dempster–Shafer belief structure. Int. J. Intell. Syst. 33(7), 1343–1363 (2018). https://doi.org/10.1002/int.21956

    Article  Google Scholar 

  31. Zhou, J., Han, C., Sun, L., et al.: Linguistic multi-criteria group decision-making method combining cloud model and evidence theory. IEICE Trans. Inf. Syst. E102.D(4), 845–855 (2019). https://doi.org/10.1587/transinf.2018EDP7288

    Article  Google Scholar 

  32. Li, P., Wei, C.: An emergency decision-making method based on D–S evidence theory for probabilistic linguistic term sets. Int. J. Disaster Risk Reduct. 37, 101178 (2019). https://doi.org/10.1016/j.ijdrr.2019.101178

    Article  Google Scholar 

  33. Tian, Z.-P., Nie, R.-X., Wang, J.-Q.: Probabilistic linguistic multi-criteria decision-making based on evidential reasoning and combined ranking methods considering decision-makers’ psychological preferences. J. Oper. Res. Soc. (2019). https://doi.org/10.1080/01605682.2019.1632752

    Article  Google Scholar 

  34. Fang, R., Liao, H., Yang, J.-B., et al.: Generalised probabilistic linguistic evidential reasoning approach for multi-criteria decision-making under uncertainty. J. Oper. Res. Soc. (2019). https://doi.org/10.1080/01605682.2019.1654415

    Article  Google Scholar 

  35. Yang, J.-B., Xu, D.-L.: Evidential reasoning rule for evidence combination. Artif. Intell. 205, 1–29 (2013). https://doi.org/10.1016/j.artint.2013.09.003

    Article  MathSciNet  MATH  Google Scholar 

  36. Fu, C., Yang, J.-B., Yang, S.-L.: A group evidential reasoning approach based on expert reliability. Eur. J. Oper. Res. 246(3), 886–893 (2015). https://doi.org/10.1016/j.ejor.2015.05.042

    Article  MathSciNet  MATH  Google Scholar 

  37. Ma, Z., Zhu, J., Chen, Y.: A probabilistic linguistic group decision-making method from a reliability perspective based on evidential reasoning. IEEE Trans. Syst. Man Cybern. (2018). https://doi.org/10.1109/TSMC.2018.2815716

    Article  Google Scholar 

  38. Fu, C., Xue, M., Chang, W., et al.: An evidential reasoning approach based on risk attitude and criterion reliability. Knowl. Based Syst. 199, 105947 (2020). https://doi.org/10.1016/j.knosys.2020.105947

    Article  Google Scholar 

  39. Zhai, Y., Xu, Z., Liao, H.: Probabilistic linguistic vector-term set and its application in group decision making with multi-granular linguistic information. Appl. Soft Comput. 49, 801–816 (2016). https://doi.org/10.1016/j.asoc.2016.08.044

    Article  Google Scholar 

  40. Zhai, Y., Xu, Z.: Managing individual evaluator’s personalized semantic environment of linguistic term with improved vector expression in multi-granularity linguistic group decision making. Appl. Soft Comput. 92, 106334 (2020). https://doi.org/10.1016/j.asoc.2020.106334

    Article  Google Scholar 

  41. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning—I. Inf. Sci. 8(3), 199–249 (1975). https://doi.org/10.1016/0020-0255(75)90036-5

    Article  MathSciNet  MATH  Google Scholar 

  42. Rodriguez, R.M., Martinez, L., Herrera, F.: Hesitant fuzzy linguistic term sets for decision making. IEEE Trans. Fuzzy Syst. 20(1), 109–119 (2012). https://doi.org/10.1109/TFUZZ.2011.2170076

    Article  Google Scholar 

  43. Zhang, G., Dong, Y., Xu, Y.: Consistency and consensus measures for linguistic preference relations based on distribution assessments. Inf. Fusion 17, 46–55 (2014). https://doi.org/10.1016/j.inffus.2012.01.006

    Article  Google Scholar 

  44. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 38(2), 325–339 (1967). https://doi.org/10.1214/aoms/1177698950

    Article  MathSciNet  MATH  Google Scholar 

  45. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    Book  MATH  Google Scholar 

  46. Zhang, L.: Approaches to multiple attribute group decision making under intuitionistic fuzzy settings: application of Dempster–Shafer theory of evidence. Arab. J. Sci. Eng. 44(4), 3719–3732 (2019). https://doi.org/10.1007/s13369-018-3657-5

    Article  Google Scholar 

  47. Mondéjar-Guerra, V.M., Muñoz-Salinas, R., Marín-Jiménez, M.J., et al.: Keypoint descriptor fusion with Dempster–Shafer theory. Int. J. Approx. Reason. 60, 57–70 (2015). https://doi.org/10.1016/j.ijar.2015.03.001

    Article  MathSciNet  MATH  Google Scholar 

  48. Nakahara, Y.: User oriented ranking criteria and its application to fuzzy mathematical programming problems. Fuzzy Sets Syst. 94(3), 275–286 (1998). https://doi.org/10.1016/S0165-0114(96)00262-X

    Article  MathSciNet  MATH  Google Scholar 

  49. Ölçer, A.İ, Odabaşi, A.Y.: A new fuzzy multiple attributive group decision making methodology and its application to propulsion/manoeuvring system selection problem. Eur. J. Oper. Res. 166(1), 93–114 (2005). https://doi.org/10.1016/j.ejor.2004.02.010

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Guangxi Province (Nos. 2018GXNSFBA281004, AD19245134).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fei Qu or Jian-Qiang Wang.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, XK., Deng, Mh., Hou, W.h. et al. Probabilistic Linguistic Group Decision-Making Based on Evidential Reasoning Considering Correlations Between Linguistic Terms. Int. J. Fuzzy Syst. 25, 3001–3015 (2023). https://doi.org/10.1007/s40815-023-01550-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-023-01550-w

Keywords

Navigation