Skip to main content
Log in

A New Approach to Fault Estimation of Discrete-Time Markov Jump Fuzzy Systems with Iterative Current Observers

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper is concentrated on the fault estimation of discrete-time Markov jump fuzzy systems via iterative learning based on current observers. A new approach is proposed to construct the observers with system outputs and covers the traditional one as a special case. With the help of a matched transformation and a structure separation technique, conditions for the resultant observer error systems to be stochastically stable are established in terms of linear matrix inequalities. It is shown that the proposed method is less conservative than the existing one. A numerical example is provided to verify the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Krasovskii, N.N., Lidskii, E.A.: Analytical design of controllers in systems with random attributes. Automation and Remote Control 22, 1021–1025 (1961)

    MathSciNet  MATH  Google Scholar 

  2. Assawinchaichote, W., Nguang, S.K., Shi, P.: Robust \({\cal{H} }_\infty\) fuzzy filter design for uncertain nonlinear singularly perturbed systems with Markovian jumps: an LMI approach. Inform. Sci. 177, 1699–1714 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dong, J., Yang, G.: Robust \(H_2\) control of continuous-time Markov jump linear systems. Automatica 44, 1431–1436 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fu, L., Ma, Y.: \(H_{\infty }\) memory feedback control for uncertain singular Markov jump systems with time-varying delay and input saturation. Comput. Appl. Math. 37(4), 4686–4709 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. de Oliveira, A.M., Costa, O.L.V.: mixed \({\cal{H} }_2/{\cal{H} }_\infty\) control of hidden Markov jump systems. Int. J. Robust and Nonlinear Control 28, 1261–1280 (2018)

    Article  Google Scholar 

  6. Ali, M.S., Vadivel, R., Saravanakumar, R.: Design of robust reliable control for T-S fuzzy Markovian jumping delayed neutral type neural networks with probabilistic actuator faults and leakage delays: An event-triggered communication scheme. ISA Trans. 77, 30–48 (2018)

    Article  Google Scholar 

  7. Boukas, E.K., Liu, Z.K., Shi, P.: Delay-dependent stability and output feedback stabilisation of Markov jump system with time-delay. IEE Proceed. Control Theory and Appl. 149, 379–386 (2002)

    Article  Google Scholar 

  8. Tartaglione, G., Ariola, M., Amato, F.: An observer-based output feedback controller for the finite-time stabilization of Markov jump linear systems. IEEE Control Syst. Lett. 3, 763–768 (2019)

    Article  MathSciNet  Google Scholar 

  9. Shen, M., Park, J.H., Ye, D.: A separated approach to control of Markov jump nonlinear systems with general transition probabilities. IEEE Trans. on Cybern. 46, 2010–2018 (2016)

    Article  Google Scholar 

  10. de Oliveira, A.M., Costa, O.L.V., Daafouz, J.: Design of stabilizing dynamic output feedback controllers for hidden Markov jump linear systems. IEEE Control Syst. Lett. 2, 278–283 (2018)

    Article  MathSciNet  Google Scholar 

  11. Ma, S., Boukas, E.K., Chinniah, Y.: Stability and stabilization of discrete-time singular Markov jump systems with time-varying delay. Int. J. Robust and Nonlinear Control 20, 531–543 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Sasirekha, R., Rakkiyappan, R., Cao, J., et al.: State estimation of discrete-time markov jump neural networks with general transition probabilities and output quantization. J. Differ. Equ. Appl. 23, 1824–1852 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Shen, M., Nguang, S.K., Ahn, C.K.: Quantized \({\cal{H} }_\infty\) output control of linear Markov jump systems in finite frequency domain. IEEE Trans. Syst. Man Cybern.: Syst. 49, 1901–1911 (2019)

    Article  Google Scholar 

  14. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. SMC–15, 116–132 (1985)

    Article  MATH  Google Scholar 

  15. Li, H., Gao, Y., Wu, L., et al.: Fault detection for TS fuzzy time-delay systems: delta operator and input-output methods. IEEE Trans. Cybern. 45(2), 229–241 (2014)

    Article  Google Scholar 

  16. Tanaka, K., Ikeda, T., Wang, H.O.: Robust stabilization of a class of uncertain nonlinear systems via fuzzy control: Quadratic stabilizability, \({\cal{H} }_{\infty }\) control theory, and linear matrix inequalities. IEEE Trans. on Fuzzy Syst. 4, 1–13 (1996)

    Article  Google Scholar 

  17. Wu, J., He, F., He, X., et al.: Dynamic event-triggered fuzzy adaptive control for non-strict-feedback stochastic nonlinear systems with injection and deception attacks. Int. J. Fuzzy Syst. 25, 1–12 (2023)

    Article  Google Scholar 

  18. Dong, S., Su, H., Shi, P., et al.: Filtering for discrete-time switched fuzzy systems with quantization. IEEE Trans. Fuzzy Syst. 25(6), 1616–1628 (2016)

    Article  Google Scholar 

  19. Choi, H.H.: Adaptive controller design for uncertain fuzzy systems using variable structure control approach. Automatica 45, 2646–2650 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tseng, C.S., Chen, B.S., Uang, H.J.: Fuzzy tracking control design for nonlinear dynamic systems via T-S fuzzy model. IEEE Trans. on Fuzzy Syst. 9, 381–392 (2001)

    Article  Google Scholar 

  21. Zhang, J., Liu, D., Ma, Y.: Finite-time dissipative control of uncertain singular T-S fuzzy time-varying delay systems subject to actuator saturation. Comput. Appl. Math. 39(3), 1–22 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. Chadli, M., Karimi, H.R.: Robust observer design for unknown inputs Takagi-Sugeno models. IEEE Trans. on Fuzzy Syst. 21, 158–164 (2012)

    Article  MATH  Google Scholar 

  23. Xie, X., Wei, C., Gu, Z., et al.: Relaxed resilient fuzzy stabilization of discrete-time Takagi-Sugeno systems via a higher order time-variant balanced matrix method. IEEE Trans. on Fuzzy Syst. 30(11), 5044–5050 (2022)

    Article  Google Scholar 

  24. Hassan, M.R.: A combination of hidden Markov model and fuzzy model for stock market forecasting. Neurocomputing 72, 3439–3446 (2009)

    Article  Google Scholar 

  25. Jaballi, A., Sakly, A., El Hajjaji, A.: M-matrix based robust stability and stabilization for uncertain discrete-time switched T-S fuzzy systems with time-varying delays. ISA Trans. 63, 60–68 (2016)

    Article  Google Scholar 

  26. Divya, H., Sakthivel, R., Liu, Y.: Delay-dependent synchronization of T-S fuzzy Markovian jump complex dynamical networks. Fuzzy Sets and Syst. (2020). https://doi.org/10.1016/j.fss.2020.10.010

    Article  MATH  Google Scholar 

  27. Che, J., Zhu, Y., Basin, M.V., et al.: Active fault-tolerant control for discrete-time Markov jump LPV systems via time-varying hidden Markov model approach. Int. J. Control Autom. Syst. 20(6), 1785–1799 (2022)

    Article  Google Scholar 

  28. Wang, Z., Shen, Y., Zhang, X., Wang, Q.: Observer design for discrete-time descriptor systems: an LMI approach. Syst. Control Lett. 61, 683–687 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Huang, S., Yang, G.: Fault tolerant controller design for T-S fuzzy systems with time-varying delay and actuator faults: a K-step fault-estimation approach. IEEE Trans. on Fuzzy Syst. 22, 1526–1540 (2014)

    Article  Google Scholar 

  30. Sha, Y., Hu, J., Yao, J.: Active fault-tolerant control strategy for electromechanical servo system based on dual fuzzy RBF neural networks and velocity reconstruction. Int. J. Fuzzy Syst. 25(2), 715–730 (2022)

    Article  Google Scholar 

  31. Ma, Y., Shen, M., Du, H., Ren, Y., Bian, G., et al.: An iterative observer-based fault estimation for discrete-time T-S fuzzy systems. Int. J. Sys. Sci. 51, 1007–1018 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  32. Nassajian, G., Balochian, S.: Optimal control based on neural observer with known final time for fractional order uncertain non-linear continuous-time systems. Comput. Appl. Math. 39(4), 1–20 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. Li, Q., Wang, Z., Wu, h, et al.: Mixed \(H_2\)/\(H_{\infty }\) fault-tolerant sampled-data fuzzy control for nonlinear parabolic PDE systems under deception attacks. Int. J. Fuzzy Syst. 24(8), 3513–3531 (2022)

    Article  Google Scholar 

  34. Yan, J., Yang, G., Li, X.: Adaptive observer-based fault-tolerant tracking control for T-S fuzzy systems with mismatched faults. IEEE Trans. on Fuzzy Syst. 45, 1–13 (2019)

    Google Scholar 

  35. Lewis, A.: Fuzzy-based Robust Precision Consensus Tracking for Uncertain Networked Systems with Cooperative-Antagonistic Interactions. arXiv preprint arXiv:2204.07796, (2022)

  36. He, S.: Fault estimation for T-S fuzzy Markovian jumping systems based on the adaptive observer. Int. J. Control Autom. Syst. 12, 977–985 (2014)

    Article  Google Scholar 

  37. Wang, J., Liang, K., Huang, X., et al.: Dissipative fault-tolerant control for nonlinear singular perturbed systems with Markov jumping parameters based on slow state feedback. Appl. Math. Comput. 328, 247–262 (2018)

    MathSciNet  MATH  Google Scholar 

  38. Yang, H., Jiang, Y., Yin, S.: Adaptive fuzzy fault tolerant control for Markov jump systems with additive and multiplicative actuator faults. IEEE Trans. on Fuzzy Syst. 29(4), 772–785 (2020)

    Article  Google Scholar 

  39. Yakubovich, V.A., Boyd, S., Ghaoui, L.E., Feron, E., Balakrishnan, V.: Linear matrix inequalities in system and control theory. Siam Review 37(3), 479–481 (1995)

    Article  Google Scholar 

  40. Cao, Z., Lin, C.T.: Inherent fuzzy entropy for the improvement of EEG complexity evaluation. IEEE Trans. Fuzzy Syst. 26(2), 1032–1035 (2018)

    Article  Google Scholar 

  41. Gault, J.W., Robinson, J.P., Reddy, S.M.: Multiple fault detection in combinational networks. IEEE Trans. Comput. C–21(1), 31–36 (1972)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guobao Zhang.

Ethics declarations

Conflict of interest

No conflict of interest exits in the submission of this manuscript, and it is approved by all authors for publication.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Shi, W., Huang, Y. et al. A New Approach to Fault Estimation of Discrete-Time Markov Jump Fuzzy Systems with Iterative Current Observers. Int. J. Fuzzy Syst. 25, 3162–3176 (2023). https://doi.org/10.1007/s40815-023-01561-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-023-01561-7

Keywords

Navigation