Skip to main content
Log in

Design of Anti-disturbance Reliable Control for Fuzzy Networked Control Systems with Multiple Disturbances

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This research addresses the problems of finite-time boundedness and disturbance rejection for T-S fuzzy networked systems that are vulnerable to actuator faults, linear fractional uncertainties and multiple disturbances through a reliable anti-disturbance control design. In particular, multiple disturbances encompasses two kinds, where the first kind of disturbance is matched, which is produced by fuzzy exogenous systems and the second kind is mismatched disturbance, which is norm-bounded. Moreover, in order to depict the reality more precisely, the actuator faults are taken into account in the system under consideration. In particular, the fuzzy disturbance observer is constructed for closely estimating the matched disturbances. After that, a reliable anti-disturbance controller is designed in accordance with the output of the conceived disturbance observer. Furthermore, the \((\xi _1,\xi _2,\xi _3)-\eta \) dissipative performance is deployed in order to reduce the imprints of mismatched disturbances to the greatest extent feasible. Moreover, by constructing a Lyapunov-Krasovskii functional, a set of adequate criteria in the form of linear matrix inequalities is established, which guarantees that the undertaken system achieves finite-time boundedness. In conclusion, two numerical examples are shown, one of which is a model of a tunnel diode circuit, which reveals the competence and applicability of the suggested control mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Zhao, N., Shi, P., Xing, W.: Dynamic event-triggered approach for networked control systems under denial of service attacks. Int. J. Robust. Nonlin. 31(5), 1774–1795 (2021)

    Article  MathSciNet  Google Scholar 

  2. Yang, R., Yu, Y., Sun, J., Karimi, H.R.: Event-based networked predictive control for networked control systems subject to two-channel delays. Inf. Sci. 524, 136–147 (2020)

    Article  MathSciNet  Google Scholar 

  3. Zheng, W., Zhang, Z., Lam, H.K., Sun, F., Wen, S.: LMIs-based stability analysis and fuzzy-logic controller design for networked systems with sector nonlinearities: Application in tunnel diode circuit. Expert Syst. Appl. 198, 116627 (2022)

    Article  Google Scholar 

  4. Fang, F., Ding, H., Liu, Y., Park, J.H.: Fault tolerant sampled-data \(H_{\infty }\) control for networked control systems with probabilistic time-varying delay. Inf. Sci. 544, 395–414 (2021)

    Article  Google Scholar 

  5. Ma, M., Wang, T., Qiu, J., Karimi, H.R.: Adaptive fuzzy decentralized tracking control for large-scale interconnected nonlinear networked control systems. IEEE Trans. Fuzzy Syst. 29(10), 3186–3191 (2020)

    Article  Google Scholar 

  6. Zhong, Q., Han, S., Shi, K., Zhong, S., Kwon, O.M.: Co-design of adaptive memory event-triggered mechanism and aperiodic intermittent controller for nonlinear networked control systems. IEEE Trans. Circuits Syst. II 69(12), 4979–4983 (2022)

    Google Scholar 

  7. Shen, H., Li, F., Yan, H., Karimi, H.R., Lam, H.K.: Finite-time event-triggered \({\cal{H} } _ {\infty }\) control for T-S fuzzy Markov jump systems. IEEE Trans. Fuzzy Syst. 26(5), 3122–3135 (2018)

    Article  Google Scholar 

  8. Shi, S., Fei, Z., Karimi, H.R., Lam, H.K.: Event-triggered control for switched T-S fuzzy systems with general asynchronism. IEEE Trans. Fuzzy Syst. 30(1), 27–38 (2020)

    Article  Google Scholar 

  9. Pan, Y., Wu, Y., Lam, H.K.: Security-based fuzzy control for nonlinear networked control systems with DoS attacks via a resilient event-triggered scheme. IEEE Trans. Fuzzy Syst. 30(10), 4359–4368 (2022)

    Article  Google Scholar 

  10. Ran, G.T., Lu, Z.D., Xu, F.X., Lu, J.X.: Event-triggered dynamic output feedback control for networked T-S fuzzy systems with asynchronous premise variables. IEEE Access. 6, 78740–78750 (2018)

    Article  Google Scholar 

  11. Ge, H., Yue, D., Xie, X., Deng, S., Hu, S.: Security control of networked T-S fuzzy system under intermittent DoS jamming attack with event-based predictor. Int. J. Fuzzy Syst. 21, 700–714 (2019)

    Article  MathSciNet  Google Scholar 

  12. Gu, Z., Shi, P., Yue, D., Yan, S., Xie, X.: Memory-based continuous event-triggered control for networked T-S fuzzy systems against cyberattacks. IEEE Trans. Fuzzy Syst. 29(10), 3118–3129 (2020)

    Article  Google Scholar 

  13. Wen, Y., Jiao, C., Su, X., Shi, P.: Event-triggered sliding-mode control of networked fuzzy systems with strict dissipativity. IEEE Trans. Fuzzy Syst. 30(5), 1371–1381 (2021)

    Article  Google Scholar 

  14. Liu, G., Park, J.H., Xu, S., Zhuang, G.: Robust non-fragile \({\cal{H} } _ {\infty } \) fault detection filter design for delayed singular Markovian jump systems with linear fractional parametric uncertainties. Nonlinear Anal. 32, 65–78 (2019)

    MathSciNet  Google Scholar 

  15. Xue, G., Lin, F., Li, S., Liu, H.: Composite learning control of uncertain fractional-order nonlinear systems with actuator faults based on command filtering and fuzzy approximation. Int. J. Fuzzy Syst. 24(4), 1839–1858 (2022)

    Article  Google Scholar 

  16. Mu, X., Li, X., Fang, J., Wu, X.: Reliable observer-based finite-time \(H_{\infty }\) control for networked nonlinear semi-Markovian jump systems with actuator fault and parameter uncertainties via dynamic event-triggered scheme. Inf. Sci. 546, 573–595 (2021)

    Article  Google Scholar 

  17. Li, X., She, K., Cheng, J., Shi, K., Zhong, S.: Dissipativity-based resilient reliable sampled-data asynchronous control for interval-valued fuzzy systems with semi-Markovian hybrid fault coefficients. Nonlinear Dyn. 107(3), 2215–2243 (2022)

    Article  Google Scholar 

  18. Hua, L., Zhu, H., Shi, K., Zhong, S., Tang, Y., Liu, Y.: Novel finite-time reliable control design for memristor-based inertial neural networks with mixed time-varying delays. IEEE Trans. Circuits Syst. I 68(4), 1599–1609 (2021)

    Article  MathSciNet  Google Scholar 

  19. Sakthivel, R., Satheesh, T., Harshavarthini, S., Almakhles, D.J.: Design of resilient reliable control for uncertain periodic piecewise systems with time-varying delay and disturbances. J. Franklin Inst. 357(17), 12326–12345 (2020)

    Article  MathSciNet  Google Scholar 

  20. Luo, J., Liu, X., Tian, W., Zhong, S., Shi, K., Li, M.: Finite-time \(H_{\infty }\) reliable control for T-S fuzzy systems with variable sampling. Phys. A: Stat. Mech. Appl. 538, 122697 (2020)

    Article  MathSciNet  Google Scholar 

  21. Yin, X., She, J., Wu, M., Sato, D., Ohnishi, K.: Disturbance rejection using SMC-based-equivalent-input-disturbance approach. Appl. Math. Comput. 418, 126839 (2022)

    MathSciNet  Google Scholar 

  22. Tian, B., Wang, Y., Guo, L.: Disturbance observer-based minimum entropy control for a class of disturbed non-Gaussian stochastic systems. IEEE Trans. Cybern. 52(6), 4916–4925 (2020)

    Article  Google Scholar 

  23. Zhou, H., Lam, H.K., Xiao, B., Zhong, Z.: Dissipativity-based filtering of time-varying delay interval type-2 polynomial fuzzy systems under imperfect premise matching. IEEE Trans. Fuzzy Syst. 30(4), 908–917 (2021)

    Article  Google Scholar 

  24. Zhang, S., Wang, Y., Zhuang, G., Song, G.: Dynamic event-based asynchronous and resilient dissipative filtering for T-S fuzzy Markov jump singularly perturbed systems against deception attacks. Int. J. Fuzzy Syst. 24(3), 1491–1514 (2022)

    Article  Google Scholar 

  25. Yao, X., Park, J.H., Wu, L., Guo, L.: Disturbance-observer-based composite hierarchical antidisturbance control for singular Markovian jump systems. IEEE Trans. Autom. Control. 64(7), 2875–2882 (2018)

    Article  MathSciNet  Google Scholar 

  26. Guo, X.G., Zhang, D.Y., Wang, J.L., Park, J.H., Guo, L.: Observer-based event-triggered composite anti-disturbance control for multi-agent systems under multiple disturbances and stochastic FDIAs. IEEE Trans. Autom. Sci. Eng. 20, 528–540 (2022)

    Article  Google Scholar 

  27. Xu, T., Gao, X., Pang, G., Qi, W., Kao, Y.: Composite anti-disturbance control for semi-Markovian jump systems with time-varying delay and generally uncertain transition rates via disturbance observer. IET Control Theory Appl. 14(14), 1877–1887 (2020)

    Article  MathSciNet  Google Scholar 

  28. Fei, Z., Shi, S., Ahn, C.K., Basin, M.V.: Finite-time control for switched T-S fuzzy systems via a dynamic event-triggered mechanism. IEEE Trans. Fuzzy Syst. 29(12), 3899–3909 (2020)

    Article  Google Scholar 

  29. Wang, Y., Zhu, B., Zhang, H., Zheng, W.X.: Functional observer-based finite-time adaptive ISMC for continuous systems with unknown nonlinear function. Automatica. 125, 109468 (2021)

    Article  MathSciNet  Google Scholar 

  30. Gao, H., Zhang, H., Shi, K., Zhou, K.: Event-triggered finite-time guaranteed cost control for networked Takagi-Sugeno (T-S) fuzzy switched systems under denial of service attacks. Int. J. Robust. Nonlin. 32(9), 5764–5775 (2022)

    Article  MathSciNet  Google Scholar 

  31. Liu, M., Wu, B., Wang, Y.E., Liu, L.: Dynamic output feedback control and guaranteed cost finite-time boundedness for switched linear systems. Circuits Syst. Signal Process. 41, 2653–2668 (2022)

    Article  Google Scholar 

  32. Wang, Y., Guo, J.: Finite-time asynchronous dissipative filtering for Markovian jump systems with time-varying delays and randomly occurred nonlinearity. Int. J. Adapt. Control Signal Process. 36(4), 926–942 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

Dr. Mohd Shakir Md Saat would like to thank Universiti Teknikal Malaysia Melaka (UTeM) for all the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Saat.

Ethics declarations

Conflict of interest

The authors declare no potential conflict of interest.

Appendices

Appendix A

Proof of Theorem 1

With a view to achieving the requisite proof of this theorem, we will pick the Lyapunov-Krasovskii functional candidate in the below form:

$$\begin{aligned} {\mathbb {V}}(t)&={\textsf{x}}^T(t) P_1{\textsf{x}}(t)+e^T(t) P_2e(t)+\int _{t-h}^{t}{\textsf{x}}^T(s) Q {\textsf{x}}(s)ds\nonumber \\&+h\int _{-h}^{0}\int _{t+s}^{t}{\textsf{x}}^T(v) R {\textsf{x}}(v)dvds. \end{aligned}$$
(22)

In the subsequent step, by reckoning the derivative of the previously stated relation (21) along the path of the equation (5), (9), we thus arrive at

$$\begin{aligned} \dot{{\mathbb {V}}}(t)=&\ 2{\textsf{x}}^T(t) P_1 \dot{{\textsf{x}}}(t)+2e^T(t)P_2 {\dot{e}}(t)+{\textsf{x}}^T(t) Q {\textsf{x}}(t)\nonumber \\&-{\textsf{x}}^T(t-h) Q {\textsf{x}}(t-h)+h^2{\textsf{x}}^T(t) R {\textsf{x}}(t)\nonumber \\&-h\int _{t-h}^{t}{\textsf{x}}^T(s) R {\textsf{x}}(s)ds. \end{aligned}$$
(23)

Here, we leverage Lemma 1 to recast the single integral term appearing in the equation (22) as follows:

$$\begin{aligned} -h\int _{t-h}^{t}{\textsf{x}}^T(s) R \,{\textsf{x}}(s)ds \le \bar{\phi }^T(t) \begin{bmatrix} -9R{}\, \frac{36}{h}R\, {} \frac{-60}{h^2}R\, \\ *{}\, \frac{-192}{h^2}R \,{}\frac{360}{h^3}R\\ *{}\, *{}\, \frac{-720}{h^4}R\, \end{bmatrix} \bar{\phi }(t) \end{aligned},$$
(24)

where \(\bar{\phi }(t)= \begin{bmatrix} \bar{\phi }^T_1(t)&\bar{\phi }^T_2(t)&\bar{\phi }^T_3(t) \end{bmatrix}^T, \bar{\phi }_1(t) = \int _{t-h}^{t}{\textsf{x}}(s) ds, \bar{\phi }_2(t) = \int _{t-h}^{t} ds\int _{t-h}^{s}{\textsf{x}}(w) dw \ \text {and} \bar{\phi }_3(t)= \int _{t-h}^{t} ds\int _{t-h}^{s}dw \int _{t-h}^{w}{\textsf{x}}(u) du. \)

On the other hand, the below equality is viable for some invertible matrix \({\mathbb {M}}\):

$$\begin{aligned} 0=&\ 2 \begin{bmatrix} {\textsf{x}}^T(t)+ \dot{{\textsf{x}}}^T(t)+ {\textsf{x}}^T(t-h) \end{bmatrix}{\mathbb {M}}\bigg [\sum _{i=1}^{\gamma }\sum _{j=1}^{\gamma }{\mathfrak {h}}_i({\textsf{x}}){\mathfrak {g}}_j({\textsf{x}})\nonumber \\ [{A_i}{\textsf{x}}(t)+{B_i}{\mathfrak {S}}K_{pj}{\textsf{x}}(t)+B_i{\mathfrak {S}}K_{rj}{\textsf{x}}(t-h)\nonumber \\+B_i{\mathcal {V}}_ie(t)+{C}_{i}\rho _1(t)-\dot{{\textsf{x}}}(t)]\bigg ]. \end{aligned}$$
(25)

At the next step, it is straightforward to arrive at the following expression by blending the preceding relations (22, 23, (24):

$$\begin{aligned}\dot{{\mathbb {V}}}(t)- \varpi {\mathbb {V}}(t)-{\mathfrak {D}}^T(t) \varpi {\mathfrak {D}}(t)\nonumber \\ & \\\quad\le \sum _{i=1}^{\gamma }\sum _{j=1}^{\gamma }{\mathfrak {h}}_i({\textsf{x}}){\mathfrak {g}}_j({\textsf{x}})\Lambda^T(t)[\Xi _{ij}]\Lambda (t), \end{aligned}$$
(26)

where\(\Lambda^T(t)= \big [ {\textsf{x}}^T(t) \ \ \dot{{\textsf{x}}}^T(t) \ \ e^T(t) \ \ {\textsf{x}}^T(t-h) \ \ \bar{\phi }^T_1(t) \ \ \bar{\phi }^T_2(t) \ \ \bar{\phi }^T_3(t) \ \ {\mathfrak {D}}^T(t) \big ]\) and the matrix \([\Xi _{ij}]\) is specified in the statement of the theorem.

Besides, we present the following criteria, all of which are grounded in the characteristics of the membership function:

$$\begin{aligned} \sum _{i=1}^{\gamma }\sum _{j=1}^{\gamma }{\mathfrak {h}}_i({\textsf{x}})({\mathfrak {h}}_j({\textsf{x}})-{\mathfrak {g}}_j({\textsf{x}}))S_{i}=0 \end{aligned},$$
(27)

where \(S_i = diag \{S_{i1},S_{i2},...,S_{i9}\}\) is any positive definite slack matrix. Then,

$$\begin{aligned} \sum _{i=1}^{\gamma }&\sum _{j=1}^{\gamma }{\mathfrak {h}}_i({\textsf{x}}){\mathfrak {g}}_j({\textsf{x}})\Xi _{ij}\\&=\sum _{i=1}^{\gamma }\sum _{j=1}^{\gamma }{\mathfrak {h}}_i({\textsf{x}}){\mathfrak {g}}_j({\textsf{x}})\Xi _{ij}+\sum _{i=1}^{\gamma }\sum _{j=1}^{\gamma }{\mathfrak {h}}_i({\textsf{x}})({\mathfrak {h}}_j({\textsf{x}})-{\mathfrak {g}}_j({\textsf{x}}))S_i \nonumber \\&=\sum _{i=1}^{\gamma }\sum _{j=1}^{\gamma }{\mathfrak {h}}_i({\textsf{x}})({\mathfrak {g}}_j({\textsf{x}})-\beta _j{\mathfrak {h}}_j({\textsf{x}})+\beta _j{\mathfrak {h}}_j({\textsf{x}}))\Xi _{ij}\nonumber \\&\,\,\,\,+\sum _{i=1}^{\gamma }\sum _{j=1}^{\gamma }{\mathfrak {h}}_i({\textsf{x}})({\mathfrak {h}}_j({\textsf{x}})-{\mathfrak {g}}_j({\textsf{x}})-\beta _j{\mathfrak {h}}_j({\textsf{x}})+\beta _j{\mathfrak {h}}_j({\textsf{x}}))S_i\nonumber \\&=\sum _{i=1}^{\gamma }\sum _{j=1}^{\gamma }{\mathfrak {h}}_i({\textsf{x}})({\mathfrak {g}}_j({\textsf{x}})-\beta _j{\mathfrak {h}}_j({\textsf{x}})+\beta _j{\mathfrak {h}}_j({\textsf{x}}))\Xi _{ij}\nonumber \\&\,\,\,\,+\sum _{i=1}^{\gamma }\sum _{j=1}^{\gamma }{\mathfrak {h}}_i({\textsf{x}})({\mathfrak {h}}_j({\textsf{x}})-\beta _j{\mathfrak {h}}_j({\textsf{x}}))S_i\nonumber \\&\,\,\,\,-\sum _{i=1}^{\gamma }\sum _{j=1}^{\gamma }{\mathfrak {h}}_i({\textsf{x}})({\mathfrak {g}}_j({\textsf{x}})-\beta _j{\mathfrak {h}}_j({\textsf{x}}))S_i\nonumber \\&=\sum _{i=1}^{\gamma }\sum _{j=1}^{\gamma }{\mathfrak {h}}_i({\textsf{x}}){\mathfrak {h}}_j({\textsf{x}})(\beta _j\Xi _{ij}-\beta _jS_i+S_i)\nonumber \\&\,\,\,\,+\sum _{i=1}^{\gamma }\sum _{j=1}^{\gamma }{\mathfrak {h}}_i({\textsf{x}})({\mathfrak {g}}_j({\textsf{x}})-\beta _j{\mathfrak {h}}_j({\textsf{x}}))(\Xi _{ij}-S_i)\nonumber \\&=\sum _{i=1}^{\gamma }\sum _{j=1}^{\gamma }{\mathfrak {h}}_i({\textsf{x}})({\mathfrak {g}}_j({\textsf{x}})-\beta _j{\mathfrak {h}}_j({\textsf{x}}))(\Xi _{ij}-S_i)\nonumber \\&\,\,\,\,+\sum _{i=1}^{\gamma }{{\mathfrak {h}}_i^2({\textsf{x}})}(\beta _i\Xi _{ii}-\beta _iS_i+S_i)\nonumber \\&\,\,\,\,+\sum _{i=1}^{\gamma }\sum _{j=i+1}^{\gamma }{\mathfrak {h}}_i({\textsf{x}}){\mathfrak {h}}_j({\textsf{x}})(\beta _j\Xi _{ij}-\beta _jS_i+S_i\nonumber \\&\,\,\,\,+\beta _i\Xi _{ji}-\beta _iS_j+S_j), \end{aligned}$$
(28)

where \({\mathfrak {g}}_j({\textsf{x}})-\beta _{j}{\mathfrak {h}}_j({\textsf{x}}) \ge 0,\) for all j.

Now, if the criteria (10, 11, 12) are fulfilled, we can easily derive the following relation by combining the inequality (25, 26, 27, 28):

$$\begin{aligned} \dot{{\mathbb {V}}}(t) - \varpi {\mathbb {V}}(t)-{\mathfrak {D}}^T(t) \varpi {\mathfrak {D}}(t) <0. \end{aligned}$$

Considering the foregoing inequality and integrating it from 0 to \(T_f\), we yield

$$\begin{aligned} {\mathbb {V}}(t)e^{-\varpi T_f}<&\ {\mathbb {V}}(0)+\varpi \int _{0}^{T_f}e^{-\varpi s}{\mathfrak {D}}^T(s) {\mathfrak {D}}(s)ds, \nonumber \\ {\mathbb {V}}(t)\le&\ e^{\varpi T_f}[{\mathbb {V}}(0)+\varrho (1-e^{-\varpi T_f})] . \end{aligned}$$
(29)

Following this, by supposing the criteria \(\breve{P_1}=L_f^{-\frac{1}{2}}P_1L_f^{-\frac{1}{2}}\), \(\breve{P_2}=L_f^{-\frac{1}{2}}P_2L_f^{-\frac{1}{2}}\), \(\breve{Q}=L_f^{-\frac{1}{2}}QL_f^{-\frac{1}{2}}\) and \(\breve{R}=L_f^{-\frac{1}{2}}RL_f^{-\frac{1}{2}}\), it is simple to compute the expression that is displayed below for some positive definite matrix \(L_f\):

$$\begin{aligned} {\mathbb {V}}(t) \ge&\ {\textsf{x}}^T(t)P_1{\textsf{x}}(t) =\ {\textsf{x}}^T(t) L_f^{\frac{1}{2}}\breve{P_1}L_f^{\frac{1}{2}}{\textsf{x}}(t)\nonumber \\ \ge&\iota _{min}(\breve{P_1}){\textsf{x}}^T(t) L_f{\textsf{x}}(t)\nonumber \\ =&\iota _{1}{\textsf{x}}^T(t) L_f{\textsf{x}}(t) . \end{aligned}$$
(30)

On yet another note, it can be drawn from the relationship (21) that

$$\begin{aligned} {\mathbb {V}}(0)=&\ {\textsf{x}}^T(0) P_1 {\textsf{x}}(0)+e^T(0) P_2 e(0)+\int _{-h}^{0}{\textsf{x}}^T(s) Q {\textsf{x}}(s)ds\nonumber \\&\,\,\,\,+h\int _{-h}^{0}\int _{s}^{0}{\textsf{x}}^T(v) R {\textsf{x}}(v)dvds \nonumber \\ \le&[\ \iota _{max}(\breve{P_1})+\iota _{max}(\breve{P_2})+h \iota _{max}(\breve{Q})\nonumber \\&\,\,\,\,+\frac{h^3}{2}\iota _{max}(\breve{R})] \ {\textsf{x}}^T(\phi ) L_f{\textsf{x}}(\phi )\nonumber \\ \le&(\iota _2 + \iota _3+h \iota _4 + \frac{h^3}{2}\iota _5 )c_1\nonumber \\ =&{\hat{\tau }}_1 c_1. \end{aligned}$$
(31)

In a further, the next inequality could well be readily generated with the use of the expressions (29, 30, 31):

$$\begin{aligned} {\textsf{x}}^T(t) L_f{\textsf{x}}(t) \le&\frac{{\mathbb {V}}(t)}{\iota _1} \nonumber \\ <&\frac{e^{\varpi T_f} [{\hat{\tau }}c_1 + \varrho (1-e^{-\varpi T_f})}{\iota _1}. \end{aligned}$$
(32)

Therefore, if the criterion (13) is met, then it is conspicuous that \( {\textsf{x}}^T(t) L_f{\textsf{x}}(t)< c_2, \forall \ t \in [0,T_f].\) Accordingly, taking into account the Definition 1, we are able to state that the closed-loop TSFNS (9) is FT bounded with respect to \((c_1, c_2, T_f, \varrho ,L_f)\). And with this, the proof is concluded. \(\square \)

Appendix B

Proof of Theorem 2

To provide the proof of the theorem for the events of unknown actuator fault \({{\mathfrak {S}}}={{\mathfrak {S}}}_0 + {{\mathfrak {S}}}_1\Sigma \) and \(\Delta {A_i}(t)\ne 0\), the same Lyapunov-Krasovskii functional in (21) is adopted. Using these factors and the concept of dissipative performance, we reach the following expression:

$$\begin{aligned}&\dot{{\mathbb \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!{V}}}(t) - \varpi {\mathbb {V}}(t)-J(z,{\mathfrak {D}},T_f)+\eta {\mathfrak {D}}^T(t){\mathfrak {D}}(t) \,\,\,\,\,\,\,\,\,\,\,\,\,\nonumber \,\\\le \Lambda^T(t){\tilde{\Xi }}_{ij}\Lambda (t), \end{aligned}$$
(33)

where\({\tilde{\Xi }}^{1,1}_{ij}=sym\{{\mathbb {M}} ({A}_i+\Delta {A_i}(t))+{\mathbb {M}}B_i({{\mathfrak {S}}}_0 + {{\mathfrak {S}}}_1\Sigma )K_{pj}\}+Q+h^2 R-D_i^T\xi _1D_i-\varpi P_1,\ {\tilde{\Xi }}^{1,2}_{ij}=P_1-{\mathbb {M}}+({A}_i+\Delta {A_i}(t))^T{\mathbb {M}}+K^T_{pj}({{\mathfrak {S}}}_0 + {{\mathfrak {S}}}_1\Sigma )^TB^T_i{\mathbb {M}},\ {\tilde{\Xi }}^{1,3}_{ij}={\mathbb {M}} B_i {\mathcal {V}}_i-\Delta {A_i}^T(t){\L }^T_iP_2,\ {\tilde{\Xi }}^{1,4}_{ij}={\mathbb {M}} B_i ({{\mathfrak {S}}}_0 + {{\mathfrak {S}}}_1\Sigma ) K_{rj}+({A}_i+\Delta {A_i}(t))^T{\mathbb {M}}+K^T_{pj}({{\mathfrak {S}}}_0 + {{\mathfrak {S}}}_1\Sigma )^TB^T_i{\mathbb {M}},\ {\tilde{\Xi }}^{1,8}_{ij}={\mathbb {M}} C_i-D^T_i \xi _2,\ {\tilde{\Xi }}^{2,2}_{ij}=sym\{-M\},\ {\tilde{\Xi }}^{2,3}_{ij}={\mathbb {M}} B_i{\mathcal {V}}_i,\ {\tilde{\Xi }}^{2,4}_{ij}={\mathbb {M}}B_i({{\mathfrak {S}}}_0 + {{\mathfrak {S}}}_1\Sigma )K_{rj}-{\mathbb {M}}^T,\ {\tilde{\Xi }}^{2,8}_{ij}={\mathbb {M}}C_i,\ {\tilde{\Xi }}^{3,3}_{ij}= sym\{P_2{\mathfrak {E}}_i+P_2{\L } _iB_i{\mathcal {V}}_i\},\ {\tilde{\Xi }}^{3,4}_{ij}={\mathcal {V}}^T_iB^T_i{\mathbb {M}},\ {\tilde{\Xi }}^{3,8}_{ij} =P_2{\L } _iC_i,\ {\tilde{\Xi }}^{3,9}_{ij}=P_2\aleph _i,\ {\tilde{\Xi }}^{4,4}_{ij}=sym\{{\mathbb {M}}B_i{\mathfrak {S}}K_{rj}\}-Q,\ {\tilde{\Xi }}^{4,8}_{ij}={\mathbb {M}} C_i,\ {\tilde{\Xi }}^{5,5}_{ij}=-9R,\ {\tilde{\Xi }}^{5,6}_{ij}=\frac{36}{h}R,\ {\tilde{\Xi }}^{5,7}_{ij}=\frac{-60}{h^2}R,\ {\tilde{\Xi }}^{6,6}_{ij}=\frac{-192}{h^2}R,\ {\tilde{\Xi }}^{6,7}_{ij}=\frac{360}{h^3}R,\ {\tilde{\Xi }}^{7,7}_{ij}=\frac{-720}{h^4}R, \ {\tilde{\Xi }}^{8,8}_{ij}=-(\xi _3-\eta I)\) and \({\tilde{\Xi }}^{9,9}_{ij}=-(\xi _3-\eta I).\)

In order to go further, pre and post multiply the above matrix by \(diag\{X,X,I,X,X,X,X,I,I\}\) and apply Lemma  2, Schur complement lemma, the requirements \({{\mathbb {M}}}^{-1}=X,{\hat{P}}_1=XP_1X,{\hat{Q}}=XQX,{\hat{R}}=XRX \), \(P_2{\L } _i = Z_{i}\), \(X{K}_{pj}={\mathcal {Y}}_{pj}\), \(X{K}_{rj}={\mathcal {Y}}_{rj}\) on the resulting matrix. In doing so, we can have the matrix \({\hat{\Xi }}_{ij}\), which is specified in the theorem statement.

Moreover, by following similar steps as in (26), (28) for \({\hat{S}}_i = diag \{S_{i1},S_{i2},...,S_{i30}\}\) and with the aid of the constraints (14, 15, 16), we get \(\dot{{\mathbb {V}}}(t) - \varpi {\mathbb {V}}(t)-J(z,{\mathfrak {D}},T_f)+\eta {\mathfrak {D}}^T(t){\mathfrak {D}}(t) < 0.\) As of right now, we are able to say that the closed-loop TSFNS (9) is asymptotically stable in conformity with the Lyapunov stability theory.

In the next stage, with the intent to prove FT boundedness, let us define \(X=L^{-\frac{1}{2}}_f\breve{X}L^{\frac{1}{2}}_f,P_2=L^{\frac{1}{2}}_f{\tilde{P}}_2L^{\frac{1}{2}}_f, {\hat{Q}}=L^{\frac{1}{2}}_f{\tilde{Q}}L^{\frac{1}{2}}_f,{\hat{R}}=L^{\frac{1}{2}}_f{\tilde{R}}L^{\frac{1}{2}}_f\). On the other hand, by the relation \(\iota _{max}(\breve{X})=\frac{1}{\iota _{min}(\breve{{\mathbb {M}}})}\), it follows that \(I<L^{-\frac{1}{2}}_f{\mathbb {M}}L^{-\frac{1}{2}}_f<\sigma _1I\) which implies \(\iota _1=\iota _{min}(\breve{{\mathbb {M}}})>1\) and \( \iota _2=\iota _{max}(\breve{{\mathbb {M}}})>\sigma _1.\) Further, from (16) and with the settings \(\iota _{max}({\tilde{P}}_2)\le \sigma _2,\iota _{max}({\tilde{Q}})\le \sigma _3, \iota _{max}({\tilde{R}})\le \sigma _4,\) (13) can be rewritten as

$$\begin{aligned} \bigg [\frac{1}{\sigma _1}+\sigma _2 + h\sigma _3 + \frac{h^3}{2}\sigma _4\bigg ]c_1+\varrho (1- e^{-\varpi T_f}) < c_2 e^{-\varpi T_f}. \end{aligned}$$

Subsequently, by employing Schur complement in the preceding relation, we can easily deduce the relation (18). In this way and with Definitions 1 and 2, it is assured that the closed-loop TSFNS (9) is FT \((\xi _1, \xi _2, \xi _3)-\eta \) dissipative, which concludes the theorem’s proof.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakthivel, R., Elayabharath, V.T., Satheesh, T. et al. Design of Anti-disturbance Reliable Control for Fuzzy Networked Control Systems with Multiple Disturbances. Int. J. Fuzzy Syst. 26, 105–120 (2024). https://doi.org/10.1007/s40815-023-01579-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-023-01579-x

Keywords

Navigation