Skip to main content
Log in

A Controller Based on a Class of Affine T–S Fuzzy Models Using Piece-Wise Lyapunov Functions

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper investigates the problem of feedback control for a class of affine T–S fuzzy models using piece-wise Lyapunov functions. Although a large number of works on the issue have been published, several crucial problems still remain open. First, the paper shows what problems arise when using the affine T–S fuzzy model to design a controller, and in turn by employing the S-procedure, what kind of quadratic inequalities are required to help solve the resulting LMIs. It turns out that by partitioning the state space into certain cells based on the information of the antecedents of fuzzy rules, the required quadratic inequalities can be formularised. Taking advantage of the cell partition, a fuzzy controller is proposed using piece-wise Lyapunov functions, in which ensuing problems such as continuity functions used in the piece-wise Lyapunov functions and control input chattering also are addressed. Finally, examples are provided to illustrate the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Tanaka, K., Sugeno, M.: Stability analysis and design of fuzzy control systems. Fuzzy Sets Syst. 45(2), 135–156 (1992)

    Article  MathSciNet  Google Scholar 

  2. Kim, E., Kim, D.: Stability analysis and synthesis for an affine fuzzy control system via LMI and ILMI: discrete case. IEEE Trans. Syst. Man Cybern. 31(1), 132–140 (2001)

    Article  Google Scholar 

  3. Kim, E., Lee, C.H., Cho, Y.W.: Analysis and design of an affine fuzzy systems via bilinear matrix inequality. IEEE Trans. Fuzzy Syst. 13(1), 115–123 (2005)

    Article  Google Scholar 

  4. Qiu, Jianbin, Tian, Hui, Qiugang, Lu., Gao, Huijun: Nonsynchronized robust filtering design for continuous time T–S fuzzy affine dynamic systems based on piecewise Lyapunov functions. IEEE Trans. Cybern. 43(6), 1755–1766 (2013)

    Article  Google Scholar 

  5. Qiu, J., Feng, G., Gao, H.: Static-output-feedback H\(_\infty\) control of continuous-time T–S fuzzy affine systems via piecewise Lyapunov function. IEEE Trans. Fuzzy Syst. 21(2), 245–261 (2013)

    Article  Google Scholar 

  6. Ji, W., Qiu, J., Wu, L., Lam, H.: Fuzzy-affine-model-based output feedback dynamic sliding mode controller design of nonlinear systems. IEEE Trans. Syst. Man Cybern. Syst. 25(6), 1808–1823 (2016)

    Google Scholar 

  7. Wei, Y., Qiu, J., Lam, Hak-Keung., Ligang, W.: Approaches to T–S fuzzy-affine-model-based reliable output feedback control for nonlinear Ito stochastic systems. IEEE Trans. Fuzzy Syst. 25(3), 569–583 (2017)

    Article  Google Scholar 

  8. Wei, Y., Qiu, J., Shi, P., Chadli, M.: Fixed-order piecewise-affine output feedback controller for fuzzy-affine-model-based nonlinear systems with time-varying delay. IEEE Trans. Circuits Syst. I 64(4), 945–958 (2017)

    Article  Google Scholar 

  9. Wei, Y., Qiu, Ji., Shi, P., Lam, H.-K.: A new design of \(H\)-infinity piecewise filtering for discrete-time nonlinear time-varying delay systems via T–S fuzzy affine models. IEEE Trans. Syst. Man Cybern. Syst. 47(8), 2034–2047 (2017)

    Article  Google Scholar 

  10. Wei, Y., Qiu, J., Lam, H.: A novel approach to reliable output feedback control of fuzzy-affine systems with time delays and sensor faults. IEEE Trans. Fuzzy Syst. 25(6), 1808–1823 (2017)

    Article  Google Scholar 

  11. Wei, Y., Qiu, J., Reza Karimi, H.: Reliable output feedback control of discrete-time fuzzy affine systems with actuator faults. IEEE Trans. Circuits Syst. I 64(1), 170–181 (2017)

    Article  Google Scholar 

  12. Wei, Y., Qiu, J., Shi, P., Ligang, W.: A piecewise-Markovian Lyapunov approach to reliable output feedback control for fuzzy-affine systems with time-delays and actuator faults. IEEE Trans. Cybern. 48(9), 2723–2735 (2018)

    Article  Google Scholar 

  13. Ji, W., Zhang, H., Qiu, J.: Fuzzy affine model-based output feedback controller design for nonlinear impulsive systems. Commun. Nonlinear Sci. Numerical Simul. 79, 104894 (2019)

    Article  MathSciNet  Google Scholar 

  14. Wang, M., Qiu, J., Feng, G.: A novel piecewise affine filtering design for T-S fuzzy affine systems using past output measurements. IEEE Trans. Cybern. 50(4), 1509–1518 (2020)

    Article  Google Scholar 

  15. Ji, W., Qiu, J., Lam, H.: Fuzzy-affine-model-based sliding-mode control for discrete-time nonlinear 2-d systems via output feedback. IEEE Trans. Cybern. 53(2), 979–987 (2023)

    Article  Google Scholar 

  16. Ji, W., Qiu, J., Ligang, W., Lam, H.-K.: Fuzzy-affine-model-based output feedback dynamic sliding mode controller design of nonlinear systems. IEEE Trans Syst. Man Cybern. Syst. 51(3), 1652–1661 (2021)

    Google Scholar 

  17. Qiu, J., Ji, W., Rudas, I.J., Gao, H.: Asynchronous sampled-data filtering design for fuzzy-affine-model-based stochastic nonlinear systems. IEEE Trans. Cybern. 51(8), 3964–3974 (2021)

    Article  Google Scholar 

  18. Ji, W., Qiu, J., Lam, H.-K.: A new sampled-data output-feedback controller design of nonlinear systems via fuzzy affine models. IEEE Trans. Cybern. 52(3), 1681–1690 (2022)

    Article  Google Scholar 

  19. Ji, W., Qiu, J.: Observer-based output feedback control of nonlinear 2-d systems via fuzzy-affine models. IEEE Trans. Instrum. Meas. 71, 1–10 (2022)

    Article  Google Scholar 

  20. Ji, W., Qiu, J., Song, C., Yili, F.: New results on nonsynchronous-observer-based output-feedback control of fuzzy-affine-model-based discrete-time nonlinear systems. IEEE Trans. Fuzzy Syst. 31(8), 2836–2847 (2023)

    Article  Google Scholar 

  21. Wang, M., Lam, H.-K., Qiu, J., Yan, H., Li, Z.: Fuzzy-affine-model-based filtering design for continuous-time Roesser-type 2-d nonlinear systems. IEEE Trans. Cybern. 53(5), 3220–3230 (2023)

    Article  Google Scholar 

  22. Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM, Philandelphia (1994)

    Book  Google Scholar 

  23. Mou, S., Han, H.: Quadratic inequalities over affine T–S fuzzy models. In: Proceeding of the 7th International Conference on Smart Computing and Artificial Intelligence (IIAI AAI 2021) (2021)

  24. Mou, S., Han, H.: A proposal of fuzzy rule partition and its application to controller design based on affine T–S fuzzy model. IEEJ Trans. EIS 17(10), 74–84 (2022)

    Google Scholar 

  25. O’Kane, C., Han, H.: Approach for affine T–S fuzzy models with uncertainty. In: Proceedings of Joint 12th International Conference on Soft Computing and Intelligent Systems and 23rd International Symposium on Advanced Intelligent Systems (SCIS &ISIS2022) (2022)

  26. O’Kane, C., Han, H.: A controller based on a class of affine T–S fuzzy models. In: Proceedings of The 20th World Congress of the International Fuzzy Systems Association (IFSA 2023) (2023)

  27. Lin, H., Antsaklis, P.J.: Stability and stabilizability of switched linear systems: a survey of recent results. IEEE Trans. Autom. Control 54(2), 308–322 (2009)

    Article  MathSciNet  Google Scholar 

  28. Leth, J., Wisniewski, R.: On formalism and stability of switched systems. J. Control Theory Appl. 10, 05 (2012)

    Article  MathSciNet  Google Scholar 

  29. Iervolino, R., Trenn, S., Vasca, F.: Stability of piecewise affine systems through discontinuous piecewise quadratic Lyapunov functions. In: 2017 IEEE 56th Annual Conference on Decision and Control (CDC), pp. 5894–5899 (2017)

  30. Iervolino, R., Trenn, S., Vasca, F.: Asymptotic stability of piecewise affine systems with filippov solutions via discontinuous piecewise Lyapunov functions. IEEE Trans. Autom. Control 66(4), 1513–1528 (2021)

    Article  MathSciNet  Google Scholar 

  31. Poonawala, H.A.: Stability analysis via refinement of piece-wise linear Lyapunov functions. In: 2019 IEEE 58th Conference on Decision and Control (CDC), pp. 1442–1447 (2019)

  32. Dehghan, M.M.Jr.: Stability of switched linear systems under dwell time switching with piece-wise quadratic functions. In: 2014 13th International Conference on Control Automation Robotics and Vision, ICARCV 2014 (2014)

  33. Johansson, M., Rantzer, A., Arzen, K.E.: Piecewise quadratic stability of fuzzy systems. IEEE Trans. Fuzzy Syst. 7(6), 713–722 (1999)

    Article  Google Scholar 

  34. Johansson, M.: Piecewise Linear Control Systems. Ph.D. dissertation, Detp. Automat. Contr., Lund Inst. Technol., Lund (1999)

  35. Berna, M., Huseko, P.: Piecewise quadratic stability of affine Takagi–Sugeno fuzzy control systems. IFAC Proc. 37, 157–162 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugang Han.

Appendix

Appendix

1.1 Continuity Matrix

The way to construct the continuity matrices is based on the existing works works [33, 34]. Without loss of generality, let us consider there are two antecedent variables \(x_1\) and \(x_2\), and cell \({{{\mathcal {S}}}}_k\) is corresponding to the i-th partition on \(x_1\) and j-th partition on \(x_2\).

$$\begin{aligned} {{\bar{F}}}_k=\begin{bmatrix} \bar{\textbf{F}}_iC_1\\ \bar{\textbf{F}}_jC_2\\ I~~0 \end{bmatrix}\in R^{p\times 3}, \end{aligned}$$
(69)

where \(k=(i-1)\times n_{x_2}+j\), \(p=\sum _{i=1}^2\left( n_{x_i}+1\right) +n\),

$$\begin{aligned} C_1=\begin{bmatrix} 1&{} 0&{}0\\ 0 &{} 0 &{}1 \end{bmatrix},\qquad C_2=\begin{bmatrix} 0&{} 1&{}0\\ 0 &{} 0 &{}1 \end{bmatrix}, \end{aligned}$$
(70)

and the last row may be removed if the resulting \({{\bar{F}}}_k\) are of full column rank, and subsequently \(p=\sum _{i=1}^2\left( n_{x_i}+1\right)\) in this case. In the following, constructing \(\bar{\textbf{F}}_i=[ \textbf{F}_i~~ \textbf{f}_i]\) is given, while \(\bar{\textbf{F}}_j\) can be obtained in the same manner.

Let \(v=[v_1, \ldots , v_{n_{x_1}+1}]\) be corner points on \(x_1\), which means there are \(n_{x_1}\) partitions on \(x_i\), and \({{{\mathcal {S}}}}_i=[v_i, v_{i+1}]\) (\(i=1, \ldots , {n_{x_1}}\)).

  1. Step 1:

    Let \(\bar{\textbf{F}}_i\) be a \((n_{x_1}+1)\)-by-2 zero matrix, and

    $$\begin{aligned} {{{\mathcal {E}}}}=\begin{bmatrix} v_i&{}v_{i+1}\\ 1&{}1 \end{bmatrix}; \end{aligned}$$
  2. Step 2:

    replace i-th and \((i+1)\)-th rows of \(\bar{\textbf{F}}_i\) by \({{{\mathcal {E}}}}^{-1}\).

However, \(\textbf{f}_i\) in \(\bar{\textbf{F}}_i\) cannot be guaranteed to be zero for \({{{\mathcal {S}}}}_i\) for \(i\in {{{\mathcal {I}}}}_0\). Therefore, we modify \(\bar{\textbf{F}}_i\) for \(i\in {{{\mathcal {I}}}}_0\), and subsequently others related to the modification. Let \(\bar{\textbf{F}}_i(j)\), and \(\bar{\textbf{F}}_i(j,k)\) be the j-th row, and the element in row j, column k of \(\bar{\textbf{F}}_i\), respectively.

  1. Step 1:

    Calculate:

    $$\begin{aligned} r&=\left( \bar{\textbf{F}}_{i-1}(i,1)\cdot v_i+\bar{\textbf{F}}_{i-1}(i, 2)\right) /v_i=1/v_i,\\ l&=\left( \bar{\textbf{F}}_{i+1}(i+1,1)\cdot v_{i+1}+\bar{\textbf{F}}_{i+1}(i+1, 2)\right) /v_{i+1}\\&=1/v_{i+1}; \end{aligned}$$
  2. Step 2:

    Update \(\bar{\textbf{F}}_i\):

    $$\begin{aligned} \textbf{F}_i(i)=[r~~ 0], \quad \textbf{F}_i(i+1)=[l~~0]; \end{aligned}$$
  3. Step 3:

    Update \(\bar{\textbf{F}}_1\sim \bar{\textbf{F}}_{i-1}\):

    $$\begin{aligned} \bar{\textbf{F}}_{j}(i+1)=[l~~0], \quad \text {for} j=1\sim i-1; \end{aligned}$$
  4. Step 4:

    Update \(\bar{\textbf{F}}_{i+1}\sim \bar{\textbf{F}}_{n_{x_1}}\):

    $$\begin{aligned} \bar{\textbf{F}}_{j}(i)=[r~~ 0], \text { for} j=i+1\sim n_{x_1}. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Kane, C., Han, H. A Controller Based on a Class of Affine T–S Fuzzy Models Using Piece-Wise Lyapunov Functions. Int. J. Fuzzy Syst. 26, 1030–1045 (2024). https://doi.org/10.1007/s40815-023-01651-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-023-01651-6

Keywords

Navigation