Skip to main content

Advertisement

Log in

Accuracy Analysis of Type-2 Fuzzy System in Predicting Parkinson’s Disease Using Biomedical Voice Measures

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a progressive neurodegenerative illness triggered by decreased dopamine secretion. Fuzzy logic has gained substantial attention in PD diagnosis research. PD detection using fuzzy logic has presented more precise outcomes as compared with common machine learning approaches. In this research, a hybrid method combining supervised learning, unsupervised learning and feature selection techniques is developed. In a type-1 fuzzy system, the membership functions used for the fuzzification of the crisp inputs are mapped to single numbers. However, in a type-2 fuzzy system, these numbers are represented as intervals, adding an extra dimension to the definition of the membership function. The first step of the proposed method involves clustering the data using the Expectation–Maximization (EM) technique. The performance of EM clustering is performed using the Davies–Bouldin index. Subsequently, feature selection is performed using the backward stepwise regression. To predict the UPDRS, Type-2 Sugeno fuzzy inference system (T2SFIS) is implemented on the clusters generated from the previous steps. The Parkinson's telemonitoring dataset is used in this study for method evaluation. Using the EM algorithm, the PD dataset was clustered into 13 segments, and the most important features for accurate UPDRS prediction were chosen in each segment using backward stepwise regression. The hybrid method was evaluated using R-squared (R2) and RMSE. The evaluation results showed that the combination of EM, backward stepwise regression, and type-2 Sugeno FIS obtained the best accuracy in predicting Motor-UPDRS and Total-UPDRS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig.2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

The data are available in the UCI machine learning archive (https://archive.ics.uci.edu/dataset/189/parkinsons+telemonitoring), which was published online in 2009.

References

  1. Marchetti, G.F., Whitney, S.L.: Older adults and balance dysfunction. Neurol. Clin. 23(3), 785–805 (2005)

    Google Scholar 

  2. Zhao, Y., Tan, L., Lau, P., Au, W., Li, S., Luo, N.: Factors affecting health-related quality of life amongst Asian patients with Parkinson’s disease. Eur. J. Neurol. 15(7), 737–742 (2008)

    Google Scholar 

  3. Bhat, S., Acharya, U.R., Hagiwara, Y., Dadmehr, N., Adeli, H.: Parkinson’s disease: cause factors, measurable indicators, and early diagnosis [Review]. Comput. Biol. Med. 102, 234–241 (2018). https://doi.org/10.1016/j.compbiomed.2018.09.008

    Article  Google Scholar 

  4. Lew, M.: Overview of Parkinson’s disease. Pharmacotherapy 27(12P2), 155S-160S (2007)

    Google Scholar 

  5. Hall, L.O., Paul, R., Goldgof, D.B., Goldgof, G.M.: Finding covid-19 from chest x-rays using deep learning on a small dataset (2020). arXiv:2004.02060

  6. Klang, E.: Deep learning and medical imaging. J. Thorac. Dis. 10(3), 1325 (2018)

    Google Scholar 

  7. Liu, J., Pan, Y., Li, M., Chen, Z., Tang, L., Lu, C., Wang, J.: Applications of deep learning to MRI images: a survey. Big Data Min. Anal. 1(1), 1–18 (2018)

    Google Scholar 

  8. Shan, F., Gao, Y., Wang, J., Shi, W., Shi, N., Han, M., et al.: Lung infection quantification of COVID-19 in CT images with deep learning (2020). arXiv:2003.04655

  9. Chen, H.-L., Huang, C.-C., Yu, X.-G., Xu, X., Sun, X., Wang, G., Wang, S.-J.: An efficient diagnosis system for detection of Parkinson’s disease using fuzzy k-nearest neighbor approach. Expert Syst. Appl. 40(1), 263–271 (2013)

    Google Scholar 

  10. de Souza, R.W., Silva, D.S., Passos, L.A., Roder, M., Santana, M.C., Pinheiro, P.R., de Albuquerque, V.H.C.: Computer-assisted Parkinson’s disease diagnosis using fuzzy optimum-path forest and Restricted Boltzmann Machines. Comput. Biol. Med. 131, 104260 (2021)

    Google Scholar 

  11. Nilashi, M., Ibrahim, O., Samad, S., Ahmadi, H., Shahmoradi, L., Akbari, E.: An analytical method for measuring the Parkinson’s disease progression: a case on a Parkinson’s telemonitoring dataset. Measurement 136, 545–557 (2019)

    Google Scholar 

  12. Pepa, L., Capecci, M., Andrenelli, E., Ciabattoni, L., Spalazzi, L., Ceravolo, M.G.: A fuzzy logic system for the home assessment of freezing of gait in subjects with Parkinsons disease. Expert Syst. Appl. 147, 113197 (2020)

    Google Scholar 

  13. Sánchez-Fernández, L.P., Sánchez-Pérez, L.A., Concha-Gómez, P.D., Shaout, A.: Kinetic tremor analysis using wearable sensors and fuzzy inference systems in Parkinson’s disease. Biomed. Signal Process. Control 84, 104748 (2023)

    Google Scholar 

  14. Nilashi, M., Abumalloh, R.A., Yusuf, S.Y.M., Thi, H.H., Alsulami, M., Abosaq, H., et al.: Early diagnosis of Parkinson’s disease: a combined method using deep learning and neuro-fuzzy techniques. Comput. Biol. Chem. 102, 107788 (2023)

    Google Scholar 

  15. Habets, J.G., Spooner, R.K., Mathiopoulou, V., Feldmann, L.K., Busch, J.L., Roediger, J., et al.: A first methodological development and validation of ReTap: an open-source UPDRS finger tapping assessment tool based on accelerometer-data. Sensors 23(11), 5238 (2023)

    Google Scholar 

  16. Ahmed, I., Yadav, P.K.: Plant disease detection using machine learning approaches. Expert. Syst. 40(5), e13136 (2023)

    Google Scholar 

  17. Ahsan, M.M., Luna, S.A., Siddique, Z.: Machine-learning-based disease diagnosis: a comprehensive review. Healthcare 10, 541 (2022)

    Google Scholar 

  18. Gunčar, G., Kukar, M., Notar, M., Brvar, M., Černelč, P., Notar, M., Notar, M.: An application of machine learning to haematological diagnosis. Sci. Rep. 8(1), 411 (2018)

    Google Scholar 

  19. Sanmarchi, F., Fanconi, C., Golinelli, D., Gori, D., Hernandez-Boussard, T., Capodici, A.: Predict, diagnose, and treat chronic kidney disease with machine learning: a systematic literature review. J. Nephrol. (2023). https://doi.org/10.1007/s40620-023-01573-4

    Article  Google Scholar 

  20. Singh, P., Singh, N., Singh, K.K., Singh, A.: Diagnosing of disease using machine learning. In: Machine learning and the internet of medical things in healthcare, pp. 89–111. Elsevier, New York (2021)

  21. Exley, T., Moudy, S., Patterson, R.M., Kim, J., Albert, M.V.: Predicting updrs motor symptoms in individuals with Parkinson’s disease from force plates using machine learning. IEEE J. Biomed. Health Inform. 26(7), 3486–3494 (2022)

    Google Scholar 

  22. Nilashi, M., Abumalloh, R.A., Minaei-Bidgoli, B., Samad, S., Yousoof Ismail, M., Alhargan, A., Abdu Zogaan, W.: Predicting parkinson’s disease progression: evaluation of ensemble methods in machine learning. J. Healthc. Eng. (2022). https://doi.org/10.1155/2022/2793361

    Article  Google Scholar 

  23. Ornelas-Vences, C., Sanchez-Fernandez, L.P., Sanchez-Perez, L.A., Garza-Rodriguez, A., Villegas-Bastida, A.: Fuzzy inference model evaluating turn for Parkinson’s disease patients. Comput. Biol. Med. 89, 379–388 (2017)

    Google Scholar 

  24. Zuo, W.-L., Wang, Z.-Y., Liu, T., Chen, H.-L.: Effective detection of Parkinson’s disease using an adaptive fuzzy k-nearest neighbor approach. Biomed. Signal Process. Control 8(4), 364–373 (2013)

    Google Scholar 

  25. Zhan, T., Li, W.-T., Fan, B.-J., Liu, S.: Experimental evaluation on defuzzification of TSK-type-based interval type-2 fuzzy inference systems. Int. J. Control. Autom. Syst. 21(4), 1338–1348 (2023)

    Google Scholar 

  26. Castillo, O., Melin, P., Valdez, F., Soria, J., Ontiveros-Robles, E., Peraza, C., Ochoa, P.: Shadowed type-2 fuzzy systems for dynamic parameter adaptation in harmony search and differential evolution algorithms. Algorithms 12(1), 17 (2019)

    Google Scholar 

  27. Čubranić-Dobrodolac, M., Švadlenka, L., Čičević, S., Trifunović, A., Dobrodolac, M.: Using the interval Type-2 fuzzy inference systems to compare the impact of speed and space perception on the occurrence of road traffic accidents. Mathematics 8(9), 1548 (2020)

    Google Scholar 

  28. Mabuchi, S.: An interpretation of membership functions and the properties of general probabilistic operators as fuzzy set operators—Part I: case of type 1 fuzzy sets. Fuzzy Sets Syst. 49(3), 271–283 (1992)

    MathSciNet  Google Scholar 

  29. Mendel, J.M., John, R.I., Liu, F.: Interval type-2 fuzzy logic systems made simple. IEEE Trans. Fuzzy Syst. 14(6), 808–821 (2006)

    Google Scholar 

  30. Nilashi, M., Abumalloh, R.A., Alyami, S., Alghamdi, A., Alrizq, M.: Parkinson’s disease diagnosis using Laplacian score, Gaussian process regression and self-organizing maps. Brain Sci. 13(4), 543 (2023)

    Google Scholar 

  31. Moon, T.K.: The expectation-maximization algorithm. IEEE Signal Process. Mag. 13(6), 47–60 (1996)

    Google Scholar 

  32. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. 2, 224–227 (1979)

    Google Scholar 

  33. Harel, B., Cannizzaro, M., Snyder, P.J.: Variability in fundamental frequency during speech in prodromal and incipient Parkinson’s disease: a longitudinal case study. Brain Cognit. 56(1), 24–29 (2004)

    Google Scholar 

  34. Jeancolas, L., Benali, H., Benkelfat, B.-E., Mangone, G., Corvol, J.-C., Vidailhet, M., et al.: Automatic detection of early stages of Parkinson's disease through acoustic voice analysis with mel-frequency cepstral coefficients. In: 2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP) (2017)

  35. Postuma, R., Lang, A., Gagnon, J., Pelletier, A., Montplaisir, J.: How does parkinsonism start? Prodromal parkinsonism motor changes in idiopathic REM sleep behaviour disorder. Brain 135(6), 1860–1870 (2012)

    Google Scholar 

  36. Rusz, J., Hlavnička, J., Tykalová, T., Bušková, J., Ulmanová, O., Růžička, E., Šonka, K.: Quantitative assessment of motor speech abnormalities in idiopathic rapid eye movement sleep behaviour disorder. Sleep Med. 19, 141–147 (2016)

    Google Scholar 

  37. Rusz, J., Cmejla, R., Ruzickova, H., Ruzicka, E.: Quantitative acoustic measurements for characterization of speech and voice disorders in early untreated Parkinson’s disease. J. Acoust. Soc. Am. 129(1), 350–367 (2011)

    Google Scholar 

  38. Schulz, G.M., Grant, M.K.: Effects of speech therapy and pharmacologic and surgical treatments on voice and speech in Parkinson’s disease: a review of the literature. J. Commun. Disord. 33(1), 59–88 (2000)

    Google Scholar 

  39. McLennan, J., Nakano, K., Tyler, H., Schwab, R.: Micrographia in Parkinson’s disease. J. Neurol. Sci. 15(2), 141–152 (1972)

    Google Scholar 

  40. Taleb, C., Likforman-Sulem, L., Mokbel, C., Khachab, M.: Detection of Parkinson’s disease from handwriting using deep learning: a comparative study. Evol. Intell. (2020). https://doi.org/10.1007/s12065-020-00470-0

    Article  Google Scholar 

  41. Kamran, I., Naz, S., Razzak, I., Imran, M.: Handwriting dynamics assessment using deep neural network for early identification of Parkinson’s disease. Futur. Gener. Comput. Syst. 117, 234–244 (2021)

    Google Scholar 

  42. Gandhi, S., Plun-Favreau, H.: Mutations and mechanism: how PINK1 may contribute to risk of sporadic Parkinson’s disease. Brain 140(1), 2–5 (2017)

    Google Scholar 

  43. Giri, A., Mok, K.Y., Jansen, I., Sharma, M., Tesson, C., Mangone, G., et al.: Lack of evidence for a role of genetic variation in TMEM230 in the risk for Parkinson’s disease in the Caucasian population. Neurobiol. Aging 50(167), e111-167. e113 (2017)

    Google Scholar 

  44. Nieuwboer, A., Giladi, N.: Characterizing freezing of gait in Parkinson’s disease: models of an episodic phenomenon. Mov. Disord. 28(11), 1509–1519 (2013)

    Google Scholar 

  45. Schaafsma, J., Balash, Y., Gurevich, T., Bartels, A., Hausdorff, J.M., Giladi, N.: Characterization of freezing of gait subtypes and the response of each to levodopa in Parkinson’s disease. Eur. J. Neurol. 10(4), 391–398 (2003)

    Google Scholar 

  46. Bloem, B.R., Hausdorff, J.M., Visser, J.E., Giladi, N.: Falls and freezing of gait in Parkinson’s disease: a review of two interconnected, episodic phenomena. Mov. Disord. 19(8), 871–884 (2004)

    Google Scholar 

  47. Pimlott, S.L., Sutherland, A.: Molecular tracers for the PET and SPECT imaging of disease. Chem. Soc. Rev. 40(1), 149–162 (2011)

    Google Scholar 

  48. Kharfi, F.: Principles and applications of nuclear medical imaging: a survey on recent developments. In: Imaging and Radioanalytical Techniques in Interdisciplinary Research—Fundamentals and Cutting Edge Applications (2013)

  49. Khachnaoui, H., Mabrouk, R., Khlifa, N.: Machine learning and deep learning for clinical data and PET/SPECT imaging in Parkinson’s disease: a review. IET Image Process. 14(16), 4013–4026 (2020)

    Google Scholar 

  50. McCleery, J., Morgan, S., Bradley, K.M., Noel‐Storr, A.H., Ansorge, O., Hyde, C.: Dopamine transporter imaging for the diagnosis of dementia with Lewy bodies. Cochrane Database Syst. Rev. (2015)

  51. Naumann, M., Pirker, W., Reiners, K., Lange, K.W., Becker, G., Brücke, T.: Imaging the pre-and postsynaptic side of striatal dopaminergic synapses in idiopathic cervical dystonia: a SPECT STUDY Using [123I] epidepride and [123I] β-CIT. Mov. Disord. 13(2), 319–323 (1998)

    Google Scholar 

  52. Bakator, M., Radosav, D.: Deep learning and medical diagnosis: a review of literature. Multimodal Technol. Interact. 2(3), 47 (2018)

    Google Scholar 

  53. Lundervold, A.S., Lundervold, A.: An overview of deep learning in medical imaging focusing on MRI. Z. Med. Phys. 29(2), 102–127 (2019)

    Google Scholar 

  54. Zadeh, L.A.: Fuzzy logic. Computer 21(4), 83–93 (1988)

    Google Scholar 

  55. Liang, Q., Mendel, J.M.: Interval type-2 fuzzy logic systems: theory and design. IEEE Trans. Fuzzy Syst. 8(5), 535–550 (2000)

    Google Scholar 

  56. Zhuang, H., Wu, X.: Membership function modification of fuzzy logic controllers with histogram equalization. IEEE Trans. Syst. Man Cybern. B 31(1), 125–132 (2001)

    Google Scholar 

  57. Karnik, N.N., Mendel, J.M.: Type-2 fuzzy logic systems: type-reduction. In: SMC'98 Conference Proceedings. 1998 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No. 98CH36218) (1998)

  58. MathWorks, I.: Type-2 fuzzy inference systems (2023). https://www.mathworks.com/help/fuzzy/type-2-fuzzy-inference-systems.html

  59. Wu, D., Tan, W.W.: Genetic learning and performance evaluation of interval type-2 fuzzy logic controllers. Eng. Appl. Artif. Intell. 19(8), 829–841 (2006)

    Google Scholar 

  60. Wu, D., Mendel, J.M.: Designing practical interval type-2 fuzzy logic systems made simple. In: 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) (2014)

  61. Topaloğlu, F., Pehlıvan, H.: Comparison of Mamdani type and Sugeno type fuzzy inference systems in wind power plant installations. In: 2018 6th International Symposium on Digital Forensic And Security (ISDFS) (2018)

  62. Dhimish, M., Holmes, V., Mehrdadi, B., Dales, M.: Comparing Mamdani Sugeno fuzzy logic and RBF ANN network for PV fault detection. Renew. Energy 117, 257–274 (2018)

    Google Scholar 

  63. Mendel, J., Hagras, H., Tan, W.-W., Melek, W.W., Ying, H.: Introduction to type-2 fuzzy logic control: theory and applications. Wiley, New York (2014)

    Google Scholar 

  64. Karnik, N.N., Mendel, J.M.: Centroid of a type-2 fuzzy set. Inf. Sci. 132(1–4), 195–220 (2001)

    MathSciNet  Google Scholar 

  65. Wu, D., Mendel, J.M.: Enhanced karnik–mendel algorithms. IEEE Trans. Fuzzy Syst. 17(4), 923–934 (2008)

    Google Scholar 

  66. Duran, K., Bernal, H., Melgarejo, M.: Improved iterative algorithm for computing the generalized centroid of an interval type-2 fuzzy set. In: NAFIPS 2008–2008 Annual Meeting of the North American Fuzzy Information Processing Society (2008)

  67. Wu, D., Nie, M.: Comparison and practical implementation of type-reduction algorithms for type-2 fuzzy sets and systems. In: 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011) (2011)

  68. Herzet, C., Ramon, V., Vandendorpe, L.: A theoretical framework for iterative synchronization based on the sum–product and the expectation-maximization algorithms. IEEE Trans. Signal Process. 55(5), 1644–1658 (2007)

    MathSciNet  Google Scholar 

  69. Kersten, P.R., Lee, J.-S., Ainsworth, T.L.: Unsupervised classification of polarimetric synthetic aperture radar images using fuzzy clustering and EM clustering. IEEE Trans. Geosci. Remote Sens. 43(3), 519–527 (2005)

    Google Scholar 

  70. Kumar, N.P., Satoor, S., Buck, I.: Fast parallel expectation maximization for gaussian mixture models on gpus using cuda. In: 2009 11th IEEE International Conference on High Performance Computing and Communications (2009)

  71. Do, C.B., Batzoglou, S.: What is the expectation maximization algorithm? Nat. Biotechnol. 26(8), 897–899 (2008)

    Google Scholar 

  72. Tay, M.K.C., Laugier, C.: Modelling smooth paths using gaussian processes. In: Field and Service Robotics: Results of the 6th International Conference (2008)

  73. Fu, Z., Wang, L.: Color image segmentation using gaussian mixture model and em algorithm. In: International Conference on Multimedia and Signal Processing (2012)

  74. Ueda, N., Nakano, R.: Deterministic annealing EM algorithm. Neural Netw. 11(2), 271–282 (1998)

    Google Scholar 

  75. Pham, D.T., Dimov, S.S., Nguyen, C.D.: Selection of K in K-means clustering. Proc. Inst. Mech. Eng. C 219(1), 103–119 (2005)

    Google Scholar 

  76. Bezdek, J.C., Pal, N.R.: Some new indexes of cluster validity. IEEE Trans. Syst. Man Cybern B 28(3), 301–315 (1998)

    Google Scholar 

  77. Xiao, J., Lu, J., Li, X.: Davies Bouldin Index based hierarchical initialization K-means. Intell. Data Anal. 21(6), 1327–1338 (2017)

    Google Scholar 

  78. Bolshakova, N., Azuaje, F.: Cluster validation techniques for genome expression data. Signal Process. 83(4), 825–833 (2003)

    Google Scholar 

  79. Nilashi, M., Bin Ibrahim, O., Mardani, A., Ahani, A., Jusoh, A.: A soft computing approach for diabetes disease classification. Health Inform. J. 24(4), 379–393 (2018)

    Google Scholar 

  80. Nilashi, M., Ibrahim, O., Ahmadi, H., Shahmoradi, L., Farahmand, M.: A hybrid intelligent system for the prediction of Parkinson’s disease progression using machine learning techniques. Biocybern. Biomed. Eng. 38(1), 1–15 (2018)

    Google Scholar 

  81. Zhao, Y.-P., Li, B., Li, Y.-B., Wang, K.-K.: Householder transformation based sparse least squares support vector regression. Neurocomputing 161, 243–253 (2015)

    Google Scholar 

  82. Pelzer, E.A., Stürmer, S., Feis, D.-L., Melzer, C., Schwartz, F., Scharge, M., et al.: Clustering of Parkinson subtypes reveals strong influence of DRD2 polymorphism and gender. Sci. Rep. 12(1), 1–6 (2022)

    Google Scholar 

  83. Salmanpour, M.R., Shamsaei, M., Hajianfar, G., Soltanian-Zadeh, H., Rahmim, A.: Longitudinal clustering analysis and prediction of Parkinson’s disease progression using radiomics and hybrid machine learning. Quant. Imaging Med. Surg. 12(2), 906 (2022)

    Google Scholar 

  84. Shalaby, M., Belal, N.A., Omar, Y.: Data clustering improves Siamese neural networks classification of Parkinson’s disease. Complexity (2021). https://doi.org/10.1155/2021/3112771

    Article  Google Scholar 

  85. Annabel, L.S.P., Sreenidhi, S., & Vishali, N.: A novel diagnosis system for Parkinson’s disease using K-means clustering and decision tree. In: Communication and Intelligent Systems, pp. 607–615. Springer, Berlin (2021)

  86. Avci, D., Dogantekin, A.: An expert diagnosis system for parkinson disease based on genetic algorithm-wavelet kernel-extreme learning machine. Parkinson’s Disease (2016). https://doi.org/10.1155/2016/5264743

    Article  Google Scholar 

  87. Castelli, M., Vanneschi, L., Silva, S.: Prediction of the unified Parkinson’s disease rating scale assessment using a genetic programming system with geometric semantic genetic operators. Expert Syst. Appl. 41(10), 4608–4616 (2014)

    Google Scholar 

  88. Guo, P.-F., Bhattacharya, P., Kharma, N.: Advances in detecting Parkinson’s disease. In: International Conference on Medical Biometrics (2010)

  89. Khan, M. M., Chalup, S. K., Mendes, A.: Parkinson’s disease data classification using evolvable wavelet neural networks. In: Australasian Conference on Artificial Life and Computational Intelligence (2016)

  90. Parziale, A., Senatore, R., Della Cioppa, A., Marcelli, A.: Cartesian genetic programming for diagnosis of Parkinson disease through handwriting analysis: performance vs. interpretability issues. Artif. Intell. Med. 111, 101984 (2021)

    Google Scholar 

  91. Daher, A., Yassin, S., Alsamra, H., Ali, H.A.: Adaptive neuro-fuzzy inference system as new real-time approach for Parkinson seizures prediction. In: 2021 4th International Conference on Bio-Engineering for Smart Technologies (BioSMART) (2021)

  92. El-Hasnony, I.M., Barakat, S.I., Mostafa, R.R.: Optimized ANFIS model using hybrid metaheuristic algorithms for Parkinson’s disease prediction in IoT environment. IEEE Access 8, 119252–119270 (2020)

    Google Scholar 

  93. Aversano, L., Bernardi, M.L., Cimitile, M., Pecori, R.: Fuzzy neural networks to detect parkinson disease. 2020 In: IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) (2020)

  94. Bellino, G.M., Ramirez, C.R., Massafra, A.M., Schiaffino, L.: Fuzzy logic as a control strategy to command a deep brain stimulator in patients with parkinson disease. In: Latin American Conference on Biomedical Engineering (2019)

  95. Li, D.-C., Liu, C.-W., Hu, S.C.: A fuzzy-based data transformation for feature extraction to increase classification performance with small medical data sets. Artif. Intell. Med. 52(1), 45–52 (2011)

    Google Scholar 

  96. Polat, K.: Classification of Parkinson’s disease using feature weighting method on the basis of fuzzy C-means clustering. Int. J. Syst. Sci. 43(4), 597–609 (2012)

    MathSciNet  Google Scholar 

  97. Afonso, L.C., Rosa, G.H., Pereira, C.R., Weber, S.A., Hook, C., Albuquerque, V.H.C., Papa, J.P.: A recurrence plot-based approach for Parkinson’s disease identification. Futur. Gener. Comput. Syst. 94, 282–292 (2019)

    Google Scholar 

  98. Al-Fatlawi, A.H., Jabardi, M.H., Ling, S.H.: Efficient diagnosis system for Parkinson's disease using deep belief network. In: 2016 IEEE Congress on Evolutionary Computation (CEC) (2016)

  99. Anand, A., Bolishetti, N., Teja, B.S.N., Adhikari, S., Ahmed, I., Natarajan, J.: Neurodegenerative disorder of ageing using neural networks. In: 2022 International Conference on Applied Artificial Intelligence and Computing (ICAAIC) (2022)

  100. Babu, G.S., Suresh, S.: Parkinson’s disease prediction using gene expression—a projection based learning meta-cognitive neural classifier approach. Expert Syst. Appl. 40(5), 1519–1529 (2013)

    Google Scholar 

  101. Bakar, Z.A., Tahir, N.M., Yassin, I.M.: Classification of parkinson's disease based on multilayer perceptrons neural network. In: 2010 6th International Colloquium on Signal Processing & its Applications (2010)

  102. Borzì, L., Sigcha, L., Rodríguez-Martín, D., Olmo, G.: Real-time detection of freezing of gait in Parkinson’s disease using multi-head convolutional neural networks and a single inertial sensor. Artif. Intell. Med. 135, 102459 (2023)

    Google Scholar 

  103. Buza, K., Varga, N.Á.: Parkinsonet: estimation of updrs score using hubness-aware feedforward neural networks. Appl. Artif. Intell. 30(6), 541–555 (2016)

    Google Scholar 

  104. Das, R.: A comparison of multiple classification methods for diagnosis of Parkinson disease. Expert Syst. Appl. 37(2), 1568–1572 (2010)

    Google Scholar 

  105. Eskidere, Ö., Ertaş, F., Hanilçi, C.: A comparison of regression methods for remote tracking of Parkinson’s disease progression. Expert Syst. Appl. 39(5), 5523–5528 (2012)

    Google Scholar 

  106. Grover, S., Bhartia, S., Yadav, A., Seeja, K.: Predicting severity of Parkinson’s disease using deep learning. Procedia Comput. Sci. 132, 1788–1794 (2018)

    Google Scholar 

  107. Hariharan, M., Polat, K., Sindhu, R.: A new hybrid intelligent system for accurate detection of Parkinson’s disease. Comput. Methods Programs Biomed. 113(3), 904–913 (2014)

    Google Scholar 

  108. Jain, S., Shetty, S.: Improving accuracy in noninvasive telemonitoring of progression of Parkinson'S Disease using two-step predictive model. In: 2016 Third International Conference on Electrical, Electronics, Computer Engineering and their Applications (EECEA) (2016)

  109. Manap, H.H., Tahir, N.M., Yassin, A.I.M.: Statistical analysis of parkinson disease gait classification using artificial neural network. In: 2011 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT) (2011)

  110. Muniz, A., Liu, H., Lyons, K., Pahwa, R., Liu, W., Nobre, F., Nadal, J.: Comparison among probabilistic neural network, support vector machine and logistic regression for evaluating the effect of subthalamic stimulation in Parkinson disease on ground reaction force during gait. J. Biomech. 43(4), 720–726 (2010)

    Google Scholar 

  111. Pereira, C.R., Pereira, D.R., Rosa, G.H., Albuquerque, V.H., Weber, S.A., Hook, C., Papa, J.P.: Handwritten dynamics assessment through convolutional neural networks: an application to Parkinson’s disease identification. Artif. Intell. Med. 87, 67–77 (2018)

    Google Scholar 

  112. Shinde, S., Prasad, S., Saboo, Y., Kaushick, R., Saini, J., Pal, P.K., Ingalhalikar, M.: Predictive markers for Parkinson’s disease using deep neural nets on neuromelanin sensitive MRI. Neuroimage 22, 101748 (2019)

    Google Scholar 

  113. Uppalapati, B., Rao, S.S., Rao, P.S.: Application of ANN combined with machine learning for early recognition of Parkinson’s disease. In: Intelligent system design (pp. 39–49). Springer, Berlin (2023)

  114. Behroozi, M., Sami, A.: A multiple-classifier framework for Parkinson’s disease detection based on various vocal tests. Int. J. Telemed. Appl. (2016). https://doi.org/10.1155/2016/6837498

    Article  Google Scholar 

  115. Benayad, N., Soumaya, Z., Taoufiq, B.D., Abdelkrim, A.: Features selection by genetic algorithm optimization with k-nearest neighbour and learning ensemble to predict Parkinson disease. Int. J. Electr. Comput. Eng. 12(2), 1982–1989 (2019)

    Google Scholar 

  116. Mittal, V., Sharma, R.: Machine learning approach for classification of Parkinson disease using acoustic features. J. Reliable Intell. Environ. 7(3), 233–239 (2021)

    Google Scholar 

  117. Sharma, S.R., Singh, B., Kaur, M.: Classification of Parkinson disease using binary Rao optimization algorithms. Expert. Syst. 38(4), e12674 (2021)

    Google Scholar 

  118. Wan, S., Liang, Y., Zhang, Y., Guizani, M.: Deep multi-layer perceptron classifier for behavior analysis to estimate Parkinson’s disease severity using smartphones. IEEE Access 6, 36825–36833 (2018)

    Google Scholar 

  119. Kiran, G.U., Vasumathi, D.: Predicting Parkinson’s disease using extreme learning measure and principal component analysis based Mini SOM. In: Annals of the Romanian Society for Cell Biology, pp. 16099–16111 (2021)

  120. Mabrouk, R.: Principal component analysis versus subject’s residual profile analysis for neuroinflammation investigation in Parkinson patients: a PET brain imaging study. J. imaging 8(3), 56 (2022)

    Google Scholar 

  121. Rao, D.V., Sucharitha, Y., Venkatesh, D., Mahamthy, K., Yasin, S.M.: Diagnosis of Parkinson's disease using principal component analysis and machine learning algorithms with vocal features. In: 2022 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS) (2022)

  122. Wang, Y., Gao, H., Jiang, S., Luo, Q., Han, X., Xiong, Y.: Principal component analysis of routine blood test results with Parkinson’s disease: a case-control study. Exp. Gerontol. 144, 111188 (2021)

    Google Scholar 

  123. Xu, Z., Zhu, Z.: Handwritten dynamics classification of Parkinson’s disease through support vector machine and principal component analysis. J. Phys. 1848(1), 012098 (2021)

    Google Scholar 

  124. Bhakar, S., Verma, S.S.: Parkinson’s disease detection through deep learning model. In: ICT Systems and Sustainability (pp. 95–103). Springer, New York (2023)

  125. Gunduz, H.: Deep learning-based Parkinson’s disease classification using vocal feature sets. IEEE Access 7, 115540–115551 (2019)

    Google Scholar 

  126. Johri, A., Tripathi, A.: Parkinson disease detection using deep neural networks. In: 2019 Twelfth International Conference on Contemporary Computing (IC3) (2019)

  127. Kose, U., Deperlioglu, O., Alzubi, J., Patrut, B.: Diagnosing parkinson by using deep autoencoder neural network. In: Deep Learning for Medical Decision Support Systems, pp. 73–93. Springer, Berlin (2021)

  128. Lakshmi, T., Ramani, B.L., Jayana, R.K., Kaza, S., Kamatam, S.S.S.T., Raghava, B.: An ensemble model to detect Parkinson’s disease using MRI images. In: Intelligent System Design, pp. 465–473. Springer, Berlin (2023)

  129. Masud, M., Singh, P., Gaba, G.S., Kaur, A., Alroobaea, R., Alrashoud, M., Alqahtani, S.A.: CROWD: crow search and deep learning based feature extractor for classification of Parkinson’s disease. ACM Trans. Internet Technol. 21(3), 1–18 (2021)

    Google Scholar 

  130. Nagasubramanian, G., Sankayya, M.: Multi-variate vocal data analysis for detection of Parkinson disease using deep learning. Neural Comput. Appl. 33(10), 4849–4864 (2021)

    Google Scholar 

  131. Nilashi, M., Ahmadi, H., Sheikhtaheri, A., Naemi, R., Alotaibi, R., Alarood, A.A., et al.: Remote tracking of Parkinson’s disease progression using ensembles of deep belief network and self-organizing map. Expert Syst. Appl. 159, 113562 (2020)

    Google Scholar 

  132. Singh, K.R., Dash, S.: Early detection of neurological diseases using machine learning and deep learning techniques: a review. Artif. Intell. Neurol. Disord. (2023). https://doi.org/10.1016/B978-0-323-90277-9.00001-8

    Article  Google Scholar 

  133. Elshewey, A.M., Shams, M.Y., El-Rashidy, N., Elhady, A.M., Shohieb, S.M., Tarek, Z.: Bayesian optimization with support vector machine model for Parkinson disease classification. Sensors 23(4), 2085 (2023)

    Google Scholar 

  134. Tomar, D., Prasad, B.R., Agarwal, S.: An efficient Parkinson disease diagnosis system based on least squares twin support vector machine and particle swarm optimization. In: 2014 9th International Conference on Industrial And Information Systems (ICIIS) (2014)

  135. Wang, J.: A fusion kernel in SVM and improved evolutionary algorithm in feature selection for Parkinson's disease detection. In: 3rd International Conference on Artificial Intelligence, Automation, and High-Performance Computing (AIAHPC 2023) (2023)

Download references

Acknowledgment

This research is supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2024R4), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Funding

The authors are thankful to the Deanship of Scientific Research under the supervision of the Scientific and Engineering Research Center (SERC) at Najran University for funding this work under the research centers funding program grant code NU/RCP/SERC/12/6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrbakhsh Nilashi.

Appendix A

Appendix A

See Tables 5 and 6.

Table 5 Clustering results for the PD features
Table 6 Clustering results for the outputs of the dataset

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nilashi, M., Abumalloh, R.A., Ahmadi, H. et al. Accuracy Analysis of Type-2 Fuzzy System in Predicting Parkinson’s Disease Using Biomedical Voice Measures. Int. J. Fuzzy Syst. 26, 1261–1284 (2024). https://doi.org/10.1007/s40815-023-01665-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-023-01665-0

Keywords