Abstract
This paper aims to investigate an adaptive event-triggered control scheme for unreliable networked control systems with data loss, transmission delay, and time-varying delay described by Takagi–Sugeno (T–S) fuzzy model. In order to achieve higher computational efficiency, better robustness, and higher control accuracy, an adaptive event-triggered controller based a sampling-state error mechanism is proposed. The proposal of this scheme extends the adaptive range of the event-triggered controller. On the basis of linear matrix inequality (LMIs), a new stability criterion is attained under the Lyapunov–Krasovskii functional (LKF) theory. Compared with the previous results, the scheme is less conservative. By using a numerical system and a continuous stirred tank reactor (CSTR) system, the quantitative experimental results indicate that the number of sampling in the controller is reduced, thus verifying the effectiveness and superiority of this control method.



















Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Liu, Y.H., Zhi, H.M., Wei, J.M., Zhu, X.L., Xu, M.L., Ma, R., Du, H.P.: Stability analysis for nonlinear switched singular systems via T–S fuzzy modeling. J. Franklin Inst. 359(8), 3717–3732 (2022)
Sofianos, Nikolaos, et al.: Robust adaptive multiple models based fuzzy control of nonlinear systems. Neurocomputing 173(3), 1733–1742 (2016)
Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 15(1), 116–132 (1985)
Zhang, H.G., Quan, Y.B.: Modeling, identification, and control of a class of nonlinear systems. IEEE Trans. Fuzzy Syst. 9(2), 349–353 (2001)
Li, S.Q., Deng, F.Q., Zhao, X.Y.: A new perspective on fuzzy control of the stochastic T–S fuzzy systems with sampled-data. Sci. China Inf. Sci. 62, 209203 (2019)
Bhuvaneshwari, G., Prakash, M., Rakkiyappan, R., Manivannan, A.: Stability and stabilization analysis of T–S fuzzy systems with distributed time-delay using state-feedback control. Math. Comput. Simul. 205, 778–793 (2023)
Xin, L.P., Yu, B., Zhao, L., Yu, J.P.: Adaptive fuzzy backstepping control for a two continuous stirred tank reactors process based on dynamic surface control approach. Appl. Math. Comput. 377, 125138 (2020)
Cervantes, J., Wen, Y., Salazar, S., et al.: Takagi-Sugeno dynamic neuro-fuzzy controller of uncertain nonlinear systems. IEEE Trans. Fuzzy Syst. 25(6), 1601–1615 (2017)
Chaibi, R., Bachtiri, R., Hammoumi, K., Yagoubi, M.: Photovoltaic system’s MPPT under partial shading using T–S fuzzy robust control. IFAC-PapersOnLine 55(12), 214–221 (2022)
Luo, J.N., Li, M.L., Liu, X.Z., Tian, W.H., Zhong, S.M., Shi, K.B.: Stabilization analysis for fuzzy systems with a switched sampled-data control. J. Franklin Inst. 357(7), 39–58 (2020)
Koenig, A.W., D’Amico, S.: Fast algorithm for fuel-optimal impulsive control of linear systems with time-varying cost. IEEE Trans. Auto. Control. 66(9), 4029–4042 (2021)
Li, H.F., Li, C.D., Ouyang, D.Q., Nguang, S.K.: Impulsive stabilization of nonlinear time-delay system with input saturation via delay-dependent polytopic approach. IEEE Trans. Syst. Man Cyber. 51(11), 7087–7098 (2021)
Guan, C.X., Fei, Z.Y., Park, P.: Modified looped functional for sampled-data control of T–S fuzzy Markovian jump systems. IEEE Trans. Fuzzy Syst. 29(9), 2543–2552 (2021)
Fridman, E.: A refined input delay approach to sampled-data control. Automatica 46(2), 421–427 (2010)
Shao, H.Y., Yuan, G.X., Pang, Z.H., Han, Q.L.: Stability of networked control systems: a Lyapunov–Krasovskii functional plus approach. ISA Trans. 136, 235–244 (2023)
Zeng, H.B., Zhai, Z.L., He, Y., Teo, K., Wang, W.: New insights on stability of sampled-data systems with time-delay. Appl. Math. Comput. 374, 125041 (2020)
Kuppusamy, S., Joo, Y.H.: Nonfragile retarded sampled-data switched control of T–S fuzzy systems and its applications. IEEE Trans. Fuzzy Syst. 28(10), 2523–2532 (2020)
Li, H.Y., Jing, X.J., Keung, H., Lam, Shi P.: Fuzzy sampled-data control for uncertain vehicle suspension systems. IEEE Trans. Cybern. 44(7), 1111–1126 (2014)
Gandhi, V., Joo, Y.H.: T–S Fuzzy sampled-data control for nonlinear systems with actuator faults and its application to wind energy system. IEEE Trans. Fuzzy Syst. 30(2), 462–474 (2022)
Li, B., Wu, J.F., Huang, L.: Improved \({H}_{\infty }\) control for networked control systems with network-induced delay and packet dropout. J. Cent. South Univ. 23, 1215–1223 (2016)
Xiao, H.Q., He, Y., Wu, M., Xiao, S.P., She, J.H.: New results on \({H}_{\infty }\) tracking control based on the T–S fuzzy model for sampled-data networked control system. IEEE Trans. Fuzzy Syst. 23(6), 2439–2448 (2022)
Ayat, E., Mansouri, N., Boukabou, A.: Dynamic output feedback robust \({H}_{\infty }\) control of networked control systems with time-varying delays via T–S fuzzy models. J. Franklin Inst. 359(15), 8127–8154 (2022)
Jiang, X., Chen, X., Huang, T., Yan, H.: Output tracking control of single-input-multioutput systems over an erasure channel. IEEE Trans. Cybern. 52(4), 2609–2617 (2022)
Li, M., Chen, Y.: Robust time-varying \({H}_{\infty }\) control for networked control system with uncertainties and external disturbance. Int. J. Control Autom. Syst. 16, 2125–2135 (2018)
Du, Z.B., Kao, Y.G., Karimi, H.R., Zhao, X.D.: Interval type-2 fuzzy sampled-data \({H}_{\infty }\) control for nonlinear unreliable networked control systems. IEEE Trans. Fuzzy Syst. 28(7), 1434–1448 (2020)
Zhao, J., Lin, C.M., Huang, J.Y.: Decentralized \({H}_{\infty }\) sampled-data control for continuous-time large-scale networked nonlinear systems. Int. J. Fuzzy Syst. 19, 504–515 (2017)
Peng, G., Peng, K.: An \({H}_{\infty }\) output tracking control approach to sampled-data control for nonlinear networked control systems. IEEE Access 8, 143644–143653 (2020)
Wang, X., Park, J.H., Yang, H.L., Zhang, X.J., Zhong, S.M.: Delay-dependent fuzzy sampled-data synchronization of T–S fuzzy complex networks with multiple couplings. IEEE Trans. Fuzzy Syst. 28(1), 178–189 (2022)
Hu, Z., Mu, X.: Mean square stabilization for sampled-data T–S fuzzy systems with random packet dropout. IEEE Trans. Fuzzy Syst. 28(8), 1815–1824 (2020)
Wu, Y., Lu, R., Shi, P., Su, H., Wu, Z.G.: Sampled-data synchronization of complex networks with partial couplings and T–S fuzzy nodes. IEEE Trans. Fuzzy Syst. 26(2), 782–793 (2018)
Ge, C., Liu, Z.S., Wang, L., Liu, Y.J.: Improved stability criteria of T–S fuzzy systems with sampled-data-based dissipative control. Appl. Math. Comput. 1, 424 (2022)
Huang, C., Ho, D., Lu, J., Kurths, J.: Pinning synchronization in T–S fuzzy complex networks with partial and discrete-time couplings. IEEE Trans. Fuzzy Syst. 23(4), 1274–1285 (2015)
Qu, Z.F., Du, Z.B., Kao, Y.G., Wu, Z.J.: Fuzzy event-triggered tracking control for nonlinear unreliable networked systems. ISA Trans. 133, 205–217 (2023)
Huang, X.J., Cao, X.R., Ma, Y.C.: Sampled-data exponential synchronization of complex dynamical networks with time-varying delays and T–S fuzzy nodes. Comput. Appl. Math. 74, 41 (2022)
Qu, Z.F., Zhang, Z.D., Du, Z.B., Zhao, T.B.: Fuzzy optimal control for nonlinear systems with time-varying delay via sampled-data controller. Soft Comput. 24, 14743–14755 (2020)
Pan, Y., Yang, G.H.: Event-triggered fuzzy control for nonlinear networked control systems. IEEE Trans. Fuzzy Syst. 329(15), 91–107 (2017)
Wang, A., Liu, L., Qiu, J., Feng, G.: Event-triggered robust adaptive fuzzy control for a class of nonlinear systems. IEEE Trans. Fuzzy Syst. 27(8), 1648–1658 (2019)
Qiu, J., Sun, K., Wang, T., Gao, H.: Observer-based fuzzy adaptive event-triggered control for pure-feedback nonlinear systems with prescribed performance. IEEE Trans. Fuzzy Syst. 27(11), 2152–2162 (2019)
Wang, A., Liu, L., Qiu, J., Feng, G.: Finite-time adaptive fuzzy control for nonstrict-feedback nonlinear systems via an event-triggered strategy. IEEE Trans. Fuzzy Syst. 28(9), 2164–2174 (2020)
Liu, C., Zhai, J.Y.: Global adaptive event-triggered output feedback controller design for high-order nonlinear systems. J. Franklin Inst. 360(3), 1540–1559 (2023)
Song, X.N., Zhang, Q.Y., Song, S., Ahn, C.K.: Sampled-data-based event-triggered fuzzy control for PDE systems under cyberattacks. IEEE Trans. Fuzzy Syst. 30(7), 2693–2705 (2022)
Shi, S., Fei, Z., Karimi, H.R., Lam, H.K.: Event-triggered control for switched T–S fuzzy systems with general asynchronism. IEEE Trans. Fuzzy Syst. 30(1), 27–38 (2022)
Du, Z.B., Kao, Y.G., Park, J.H., Zhao, X.D., Sun, J.A.: Fuzzy event-triggered control of nonlinear networked control systems. J. Franklin Inst. 359(6), 2593–2607 (2022)
Wang, L., Dong, J.: Adaptive fuzzy consensus tracking control for uncertain fractional-order multiagent systems with event-triggered input. IEEE Trans. Fuzzy Syst. 30(2), 310–320 (2022)
Aslam, M.A., Qaisar, I., Saleem, M.A.: Quantized event-triggered feedback control under fuzzy system with time-varying delay and actuator fault. Nonlinear Anal. 35, 100823 (2020)
Yan, H.C., Wang, T.T., Zhang, H., Shi, H.B.: Event-triggered \({H}_{\infty }\) control for uncertain networked T–S fuzzy systems with time delay. Neurocomputing 157, 273–279 (2015)
Du, Z.B., Qin, Z.K., Ren, H.J., Lu, Z.Y.: Fuzzy robust \({H}_{\infty }\) sampled-data control for uncertain nonlinear systems with time-varying delay. Int. J. Fuzzy Syst. 19, 1417–1429 (2017)
Zhang, C.L., Guo, G.: Extended prescribed performance fault-tolerant control of autonomous surface vessels using event-triggered inputs. Nonlinear Dyn. 111, 1315–1327 (2023)
Selvaraj, P., Kwon, O.M., Lee, S.H., Sakthivel, R.: Disturbance rejections of interval type-2 fuzzy systems under event-triggered control scheme. App. Math. Comput. 431, 127323 (2022)
Li, Y.L., Ben, Niu, Zong, G.D., Zhao, J.F., Zhao, X.D.: Command filter-based adaptive neural finite-time control for stochastic nonlinear systems with time-varying full state constraints and asymmetric input saturation. Int. J. Syst. Sci. 53(1), 199–221 (2022)
Ao, W.G., Huang, J.H., Wang, K., Zhao, L., Gao, T.T.: Asymptotic adaptive output feedback event-triggered control of uncertain strict-feedback nonlinear systems with sensors triggering. ISA Trans. 136, 75–83 (2023)
Pan, W.H., Zhang, X.F., Li, H.F., Fan, D.B.: Event-triggered impulsive control of lower-triangular large-scale nonlinear systems based on gain scaling technique. Nonlinear Anal. 49, 101362 (2023)
Acknowledgements
This work was supported by the Natural Science Foundation of Shandong Province (ZR2021MF133, ZR2022 MF278, ZR2020QF046) and the National Natural Science Foundation of China (62103350).
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Hu, Y., Du, Z., Wang, Y. et al. Adaptive Event-Triggered Fuzzy Control for Unreliable Networked Control Systems with Time-Varying Delay. Int. J. Fuzzy Syst. 26, 1448–1465 (2024). https://doi.org/10.1007/s40815-024-01679-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40815-024-01679-2