Skip to main content

Advertisement

Log in

Ulam–Hyers Stability of Fuzzy Fractional Non-instantaneous Impulsive Switched Differential Equations Under Generalized Hukuhara Differentiability

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper is devoted to studying a class of fuzzy fractional switched implicit differential equations (FFSIDEs) with non-instantaneous impulses that there are few papers considering this issue. Considering switching law and the memory property of fractional calculus, we first present a formula of solution for FFSIDEs with non-instantaneous impulses. Subsequently, based on a sequence of Picard functions, we explore the existence of solutions for the addressed equations by successive approximation. Furthermore, Ulam–Hyers (U–H) stability for this considered equations is derived. The main results are obtained using fuzzy-valued fractional calculus and nonlinear analysis. Finally, two numerical examples illustrating the theoretical result are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

No data was used for the research described in the article.

References

  1. Sabatier, J., Agrawal, O.P., Machado, J.A.T.: Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Springer, Dordrecht (2007)

    MATH  Google Scholar 

  2. Laskin, N.: Fractional market dynamics. Physica A 287, 482–492 (2000)

    MathSciNet  MATH  Google Scholar 

  3. Tarasov, V.E.: Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, New York (2011)

    MATH  Google Scholar 

  4. Kumar, D., Singh, J.: Fractional Calculus in Medical and Health Science. CRC Press, Boca Raton (2020)

    MATH  Google Scholar 

  5. Baleanu, D., Machado, J.A.T., Luo, A.C. (eds.): Fractional Dynamics and Control. Springer, New York (2011)

    MATH  Google Scholar 

  6. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  7. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amersterdam (2006)

    MATH  Google Scholar 

  8. Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus: Models and Numerical Methods. World Scientific, Singapore (2012)

    MATH  Google Scholar 

  9. Zhou, Y., Wang, J.R., Zhang, L.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014)

    MATH  Google Scholar 

  10. Li, Y., Chen, Y.Q., Podlubny, I.: Mittag–Leffler stability of fractional order nonlinear dynamic systems. Automatica 45, 1965–1969 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Sheng, H., Chen, Y.Q., Qiu, T.S.: Fractional Processes and Fractional-Order Signal Processing: Techniques and Applications. Springer, New York (2011)

    MATH  Google Scholar 

  12. Lakshmikantham, V., Bainov, D.D., Simeonov, P.S.: Theory of Impulsive Differential Equations. World Scientific, Singapore (1989)

    MATH  Google Scholar 

  13. Gao, D.D., Li, J.L.: Existence and mean-square exponential stability of mild solutions for impulsive stochastic partial differential equations with noncompact semigroup. J. Math. Anal. Appl. 484, 123717 (2020)

    MathSciNet  MATH  Google Scholar 

  14. Fečkan, M., Zhou, Y., Wang, J.R.: On the concept and existence of solution for impulsive fractional differential equations. Commun. Nonlinear Sci. 17, 3050–3060 (2012)

    MathSciNet  MATH  Google Scholar 

  15. Luo, D.F., Tian, M.Q., Zhu, Q.X.: Some results on finite-time stability of stochastic fractional-order delay differential equations. Chaos Soliton. Fract 158, 111996 (2022)

    MathSciNet  MATH  Google Scholar 

  16. Luo, D.F., Luo, Z.G.: Existence and Hyers–Ulam stability results for a class of fractional order delay differential equations with non-instantaneous impulses. Math. Slovaca 70, 1231–1248 (2020)

    MathSciNet  MATH  Google Scholar 

  17. Pierri, M., O’Regan, D., Rolnik, V.: Existence of solutions for semi-linear abstract differential equations with not instantaneous impulses. Appl. Math. Comput. 219, 6743–6749 (2013)

    MathSciNet  MATH  Google Scholar 

  18. Wang, J.R., Ibrahim, A.G., Fečkan, M., Zhou, Y.: Controllability of fractional non-instantaneous impulsive differential inclusions without compactness. IMA J. Math. Control. Inform. 36, 443–460 (2019)

    MathSciNet  MATH  Google Scholar 

  19. Wang, J.R., Ibrahim, G., O’Regan, D.: Controllability of Hilfer fractional noninstantaneous impulsive semilinear differential inclusions with nonlocal conditions. Nonlinear Anal. Model. Control 24, 958–984 (2019)

    MathSciNet  MATH  Google Scholar 

  20. Luo, D.F., Luo, Z.G.: Existence and finite-time stability of solutions for a class of nonlinear fractional differential equations with time-varying delays and non-instantaneous impulses. Adv. Differ. Equ. 2019, 1–21 (2019)

    MathSciNet  MATH  Google Scholar 

  21. Ding, Y., O’Regan, D., Wang, J.R.: Stability analysis for conformable non-instantaneous impulsive differential equations. Bull. Iran. Math. Soc. 48, 1435–1459 (2022)

    MathSciNet  MATH  Google Scholar 

  22. Balasubramaniam, P.: Controllability of semilinear noninstantaneous impulsive ABC neutral fractional differential equations. Chaos Soliton. Fract 152, 111276 (2021)

    MathSciNet  MATH  Google Scholar 

  23. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    MATH  Google Scholar 

  24. Lakshmikantham, V., Mohapatra, R.N.: Theory of Fuzzy Differential Equations and Inclusions. Taylor & Francis, London (2003)

    MATH  Google Scholar 

  25. Allahviranloo, T., Salahshour, S. (eds.): Advances in Fuzzy Integral and Differential Equations. Springer, Berlin (2022)

    MATH  Google Scholar 

  26. Salahshour, S., Allahviranloo, T., Abbasbandy, S.: Solving fuzzy fractional differential equations by fuzzy Laplace transforms. Commun. Nonlinear Sci. 17, 1372–1381 (2012)

    MathSciNet  MATH  Google Scholar 

  27. Hoa, N.V.: Fuzzy fractional functional integral and differential equations. Fuzzy Sets Syst. 280, 58–90 (2015)

    MathSciNet  MATH  Google Scholar 

  28. Wang, X., Luo, D.F., Zhu, Q.X.: Ulam–Hyers stability of caputo type fuzzy fractional differential equations with time-delays. Chaos Soliton. Fract 156, 111822 (2022)

    MathSciNet  MATH  Google Scholar 

  29. Vu, H., Ghanbari, B., Hoa, N.V.: Fuzzy fractional differential equations with the generalized Atangana–Baleanu fractional derivative. Fuzzy Sets Syst. 429, 1–27 (2022)

    MathSciNet  MATH  Google Scholar 

  30. Hoa, N.V., Ho, V.: A survey on the initial value problems of fuzzy implicit fractional differential equations. Fuzzy Sets Syst. 400, 90–133 (2020)

    MathSciNet  MATH  Google Scholar 

  31. Ho, V., Hoa, N.V.: Hyers–Ulam stability of fuzzy fractional Volterra integral equations with the kernel \(\psi\)- function via successive approximation method. Fuzzy Sets Syst. 419, 67–98 (2021)

    MathSciNet  MATH  Google Scholar 

  32. Liu, R., Wang, J.R., O’Regan, D.: On the solutions of first-order linear impulsive fuzzy differential equations. Fuzzy Sets Syst. 400, 1–33 (2020)

    MathSciNet  MATH  Google Scholar 

  33. Ho, V., Hoa, N.V.: Non-instantaneous impulses interval-valued fractional differential equations with Caputo–Katugampola fractional derivative concept. Fuzzy Sets Syst. 404, 111–140 (2021)

    MathSciNet  MATH  Google Scholar 

  34. An, T.V., Phu, N.D., Hoa, N.V.: A survey on non-instantaneous impulsive fuzzy differential equations involving the generalized Caputo fractional derivative in the short memory case. Fuzzy Sets Syst. 443, 160–197 (2022)

    MathSciNet  MATH  Google Scholar 

  35. Luo, D.F., Wang, X., Caraballo, T., Zhu, Q.X.: Ulam–Hyers stability of Caputo-type fractional fuzzy stochastic differential equations with delay. Commun. Nonlinear Sci. 121, 107229 (2023)

    MathSciNet  MATH  Google Scholar 

  36. Santo Pedro, F., Lopes, M.M., Wasques, V.F., et al.: Fuzzy fractional differential equations with interactive derivative. Fuzzy Sets Syst. 467, 108488 (2023)

    MathSciNet  MATH  Google Scholar 

  37. Dai, Y., Kim, Y., Wee, S., Lee, D., Lee, S.: A switching formation strategy for obstacle avoidance of a multi-robot system based on robot priority model. ISA Trans. 56, 123–134 (2015)

    MATH  Google Scholar 

  38. Guo, Y., Tan, J.: Identifiability and identification of switched linear biological models. BioSystem 118, 31–38 (2014)

    MATH  Google Scholar 

  39. Li, M., Chen, Y., Xu, L., Chen, Z.Y.: Asynchronous control strategy for semi-Markov switched system and its application. Inf. Sci. 532, 125–138 (2020)

    MathSciNet  MATH  Google Scholar 

  40. Feng, T., Guo, L.H., Wu, B.W., Chen, Y.Q.: Stability analysis of switched fractional-order continuous-time systems. Nonlinear Dyn. 102, 2467–2478 (2020)

    MATH  Google Scholar 

  41. Kumar, V., Kostić, M., Tridane, A., Debbouche, A.: Controllability of switched Hilfer neutral fractional dynamic systems with impulses. IMA J. Math. Control Inf. 39, 807–836 (2022)

    MathSciNet  MATH  Google Scholar 

  42. Kumar, V., Malik, M., Baleanu, D.: Results on Hilfer fractional switched dynamical system with non-instantaneous impulses. Pramana 96, 172 (2022)

    MATH  Google Scholar 

  43. Yan, J., Hu, B., Guan, Z.H., et al.: On controllability and observability of a class of fractional-order switched systems with impulse. Nonlinear Anal. Hybrid Syst 50, 101378 (2023)

    MathSciNet  MATH  Google Scholar 

  44. Wei, W., Xiang, X.L., Peng, Y.F.: Nonlinear impulsive integro-differential equation of mixed type and optimal controls. Optimization 55, 141–156 (2006)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author thanks reviewers for their valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danfeng Luo.

Ethics declarations

Conflict of interest

It is declared that authors has no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Luo, D. Ulam–Hyers Stability of Fuzzy Fractional Non-instantaneous Impulsive Switched Differential Equations Under Generalized Hukuhara Differentiability. Int. J. Fuzzy Syst. 26, 1481–1492 (2024). https://doi.org/10.1007/s40815-024-01681-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-024-01681-8

Keywords