Skip to main content

Advertisement

Log in

Optimizing Robot Deployment in Hazardous Environment: MCDM Approach Using Field Performers Under Intuitionistic Dense Fuzzy Set

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

The lives of humans working in hazardous fields are often at risk. Therefore, replacing humans with robots can help to reduce the mortality rate. Hence, this work considers four dangerous operations, namely, earthquake rescue, fire rescue, water rescue and bomb disposal operation, and determines the most wanted field for the replacement of robots concerning their death rate. The fields’ prioritization is examined using multi-criteria decision-making (MCDM) models. Since the alternatives (fields) lack information with respect to the criteria, this work utilizes the sub-alternatives (field performer) to fill in the information of the alternatives in order to prioritize the fields and detect the impact of the robots in the field. When uncertainty prevails in crisp data, the MCDM methods are generally considered in a fuzzy environment. The intuitionistic trapezoidal dense fuzzy (ITpDF) set which is one of the extensions of fuzzy set is dealt here. Considering the MCDM models such as extended PSI, COCOSO, PIV and MARCOS in the ITpDF field, the integrated ITpDF–PSI–COCOSO–PIV–MARCOS model is framed, where the final ITpDF score values from each considered models are aggregated using the Bonferroni mean aggregation method. The aggregated ITpDF score values are defuzzified and ranked using the novel ITpDF incircle ranking. The result reveals that earthquake rescue robots have a lesser impact compared to robots utilized in bomb disposal operations. Finally, the sensitivity and comparative analysis are performed to find the effectiveness of the model and the quality of the outcome, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

The corresponding author can provide the datasets employed in work upon reasonable request.

References

  1. Bashir, M.O.I.: Application of artificial intelligence (AI) in dredging efficiency in Bangladesh. Ann. Emerg. Technol. Comput. 6(1), 74–88 (2022)

    MathSciNet  MATH  Google Scholar 

  2. Canbolat, H. (Ed.).: Robots operating in hazardous environments. BoD-Books on Demand (2017)

  3. Bahalla, A.: Accidental Deaths and Suicides in India 2021, pp. 1–298. National Crime Records Bureau, New Delhi (2021)

    Google Scholar 

  4. Swethaa, S., Felix, A.: An intuitionistic dense fuzzy AHP-TOPSIS method for military robot selection. J. Intell. Fuzzy Syst. 44(4), 6749–6774 (2023)

    MATH  Google Scholar 

  5. Bottou, L.: Stochastic gradient descent tricks. In: Neural Networks: Tricks of the Trade, 2nd edn., pp. 421–436. Berlin, Heidelberg, Springer, Berlin Heidelberg (2012)

    MATH  Google Scholar 

  6. Holland, J.H.: Genetic algorithms. Sci. Am. 267(1), 66–73 (1992)

    MATH  Google Scholar 

  7. Marini, F., Walczak, B.: Particle swarm optimization (PSO). A tutorial. Chemom. Intell. Lab. Syst. 149, 153–165 (2015)

    MATH  Google Scholar 

  8. Dorigo, M., Stützle, T.: Ant Colony Optimization: Overview and Recent Advances, pp. 311–351. Springer International Publishing (2019)

    MATH  Google Scholar 

  9. De, S.K.: The goat search algorithms. Artif. Intell. Rev. 56(8), 8265–8301 (2023)

    Google Scholar 

  10. Felix, A., Dash, S.K.: Haar FCM with DEMATEL technique to analyze the solid waste management. In: Advances in Smart Grid Technology: Select Proceedings of PECCON 2019(2), 393-402. Springer Singapore (2021)

  11. Devi, S.A., Felix, A., Narayanamoorthy, S., Ahmadian, A., Balaenu, D., Kang, D.: An intuitionistic fuzzy decision support system for COVID-19 lockdown relaxation protocols in India. Comput. Electr. Eng. 102, 108166 (2022)

    Google Scholar 

  12. Kang, D., Devi, S.A., Felix, A., Narayanamoorthy, S., Kalaiselvan, S., Balaenu, D., Ahmadian, A.: Intuitionistic fuzzy MAUT-BW Delphi method for medication service robot selection during COVID-19. Op. Res. Perspect. 9, 100258 (2022)

    Google Scholar 

  13. Nithyanandham, D., Augustin, F., Micheal, D.R., Pillai, N.D.: Energy based bipolar intuitionistic fuzzy digraph decision-making system in selecting COVID-19 vaccines. Appl. Soft Comput. 147, 110793 (2023)

    Google Scholar 

  14. Nithyanandham, D., Augustin, F., Narayanamoorthy, S., Ahmadian, A., Balaenu, D., Kang, D.: Bipolar intuitionistic fuzzy graph based decision-making model to identify flood vulnerable region. Environ. Sci. Pollut. Res. 30(60), 125254–125274 (2023)

    Google Scholar 

  15. Nithyanandham, D., Augustin, F.: A bipolar fuzzy p-competition graph based ARAS technique for prioritizing COVID-19 vaccines. Appl. Soft Comput. 146, 110632 (2023)

    Google Scholar 

  16. Zadeh, L.A.: Fuzzy sets. Inform Control 8(3), 338–353 (1965)

    MATH  Google Scholar 

  17. Dijkman, J.G., Van Haeringen, H., De Lange, S.J.: Fuzzy numbers. J. Math. Anal. Appl. 92(2), 301–341 (1983)

    MathSciNet  MATH  Google Scholar 

  18. Atanassov, K.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96 (1986)

    MathSciNet  MATH  Google Scholar 

  19. De, S.K., Beg, I.: Triangular dense fuzzy sets and new defuzzification methods. J. Intell. Fuzzy Syst. 31(1), 469–477 (2016)

    MATH  Google Scholar 

  20. De, S.K.: Triangular dense fuzzy lock sets. Soft. Comput. 22, 7243–7254 (2018)

    MATH  Google Scholar 

  21. Swethaa, S., Felix, A.: Various defuzzification methods for trapezoidal dense fuzzy sets. Adv. Math. Sci. J. 10, 251–258 (2021)

    MATH  Google Scholar 

  22. Maity, S., De, S.K., Mondal, S.P.: A study of a backorder EOQ model for cloud-type intuitionistic dense fuzzy demand rate. Int. J. Fuzzy Syst. 22, 201–211 (2020)

    MATH  Google Scholar 

  23. Sampathkumar, S., Augustin, F., Kaabar, M.K., Yue, X.G.: An integrated intuitionistic dense fuzzy Entropy-COPRAS-WASPAS approach for manufacturing robot selection. Adv. Mech. Eng. 15(3), 16878132231160264 (2023)

    Google Scholar 

  24. Maniya, K., Bhatt, M.G.: A selection of material using a novel type decision-making method: preference selection index method. Mater. Des. 31(4), 1785–1789 (2010)

    MATH  Google Scholar 

  25. Attri, R., Grover, S.: Application of preference selection index method for decision making over the design stage of production system life cycle. J. King Saud Univ.-Eng. Sci. 27(2), 207–216 (2015)

    MATH  Google Scholar 

  26. Yazdani, M., Zarate, P., Kazimieras Zavadskas, E., Turskis, Z.: A combined compromise solution (CoCoSo) method for multi-criteria decision-making problems. Manag. Decis. 57(9), 2501–2519 (2019)

    MATH  Google Scholar 

  27. Qiyas, M., Naeem, M., Khan, S., Abdullah, S., Botmart, T., Shah, T.: Decision support system based on CoCoSo method with the picture fuzzy information. J. Math. 2022, 1–11 (2022)

    MathSciNet  MATH  Google Scholar 

  28. Das, P.P., Chakraborty, S.: SWARA-CoCoSo method-based parametric optimization of green dry milling processes. J. Eng. Appl. Sci. 69(1), 1–21 (2022)

    MATH  Google Scholar 

  29. Peng, X., Zhang, X., Luo, Z.: Pythagorean fuzzy MCDM method based on CoCoSo and CRITIC with score function for 5G industry evaluation. Artif. Intell. Rev. 53(5), 3813–3847 (2020)

    MATH  Google Scholar 

  30. Mufazzal, S., Muzakkir, S.M.: A new multi-criterion decision making (MCDM) method based on proximity indexed value for minimizing rank reversals. Comput. Ind. Eng. 119, 427–438 (2018)

    Google Scholar 

  31. Khan, N.Z., Ansari, T.S.A., Siddiquee, A.N., Khan, Z.A.: Selection of E-learning websites using a novel Proximity Indexed Value (PIV) MCDM method. J. Comput. Educat. 6, 241–256 (2019)

    MATH  Google Scholar 

  32. Stević, Ž, Pamučar, D., Puška, A., Chatterjee, P.: Sustainable supplier selection in healthcare industries using a new MCDM method: measurement of alternatives and ranking according to COmpromise solution (MARCOS). Comput. Ind. Eng. 140, 106231 (2020)

    Google Scholar 

  33. Duc Trung, D.: Multi-criteria decision making under the MARCOS method and the weighting methods: applied to milling, grinding and turning processes. Manuf. Rev. 9, 3 (2022)

    MATH  Google Scholar 

  34. Bonferroni, C.: Sulle medie multiple di potenze. Boll. Un. Mat. Ital. 5(3–4), 267–270 (1950)

    MathSciNet  MATH  Google Scholar 

  35. Yager, R.R.: On generalized Bonferroni mean operators for multi-criteria aggregation. Int. J. Approx. Reason. 50(8), 1279–1286 (2009)

    MathSciNet  MATH  Google Scholar 

  36. Xu, Z., Yager, R.R.: Intuitionistic fuzzy Bonferroni means. IEEE Trans Syst. Man Cyber. Part B (Cybernetics) 41(2), 568–578 (2010)

    MATH  Google Scholar 

  37. Zhou, W., He, J.M.: Intuitionistic fuzzy normalized weighted Bonferroni mean and its application in multicriteria decision making. J. Appl. Math., 2012 (2012)

  38. He, Y., He, Z., Wang, G., Chen, H.: Hesitant fuzzy power Bonferroni means and their application to multiple attribute decision making. IEEE Trans. Fuzzy Syst. 23(5), 1655–1668 (2014)

    MATH  Google Scholar 

  39. He, Y., He, Z., Chen, H.: Intuitionistic fuzzy interaction Bonferroni means and its application to multiple attribute decision making. IEEE Trans. Cyber. 45(1), 116–128 (2014)

    MATH  Google Scholar 

  40. He, Y., He, Z.: Extensions of Atanassov’s intuitionistic fuzzy interaction bonferroni means and their application to multiple-attribute decision making. IEEE Trans. Fuzzy Syst. 24(3), 558–573 (2015)

    MATH  Google Scholar 

  41. Garg, H., Arora, R.: Bonferroni mean aggregation operators under intuitionistic fuzzy soft set environment and their applications to decision-making. J. Op. Res. Soc. 69(11), 1711–1724 (2018)

    MATH  Google Scholar 

  42. Kaur, G., Garg, H.: Multi-attribute decision-making based on Bonferroni mean operators under cubic intuitionistic fuzzy set environment. Entropy 20(1), 65 (2018)

    MathSciNet  MATH  Google Scholar 

  43. Verma, R., Merigó, J. M., Mittal, N.: Triangular Fuzzy Partitioned Bonferroni Mean Operators and Their Application to Multiple Attribute Decision Making. In: 2018 IEEE Symposium Series on Computational Intelligence (SSCI) (pp. 941-949). IEEE (2018)

  44. Verma, R., Merigó, J. M.: On generalized intuitionistic fuzzy interaction partitioned bonferroni mean operators. In: 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) (pp. 1-6). IEEE (2019)

  45. Yang, W., Pang, Y.: New \(q\)-rung orthopair fuzzy Bonferroni mean Dombi operators and their application in multiple attribute decision making. IEEE Access 8, 50587–50610 (2020)

    MATH  Google Scholar 

  46. Mahmood, T., Ali, Z., Rehman, U.U., Aslam, M.: An advanced study on the Bonferroni mean operators for managing cubic intuitionistic complex fuzzy soft settings and their applications in decision making. IEEE Access 10, 58689–58721 (2022)

    MATH  Google Scholar 

  47. Chakraborty, S., Saha, A.K.: Novel Fermatean Fuzzy Bonferroni Mean aggregation operators for selecting optimal health care waste treatment technology. Eng. Appl. Artif. Intell. 119, 105752 (2023)

    MATH  Google Scholar 

  48. Mahmood, T., Rehman, U.U., Naeem, M.: Dombi Bonferroni mean operators under bipolar complex fuzzy environment and their applications in internet world. IEEE Access 11, 22727–22755 (2023)

    MATH  Google Scholar 

  49. Luukka, P., Collan, M.: Bonferroni mean based similarity based TOPSIS. In: 2016 IEEE International Conference on Fuzzy Systems, 704–709 (2016)

  50. Garg, H., Agarwal, N., Tripathi, A.: Choquet integral-based intuitionistic fuzzy Bonferroni mean operator. In 2016 Ninth International Conference on Contemporary Computing (IC3) 1–4 (2016)

  51. Das, S., Guha, D., Mesiar, R.: Extended Bonferroni mean under intuitionistic fuzzy environment based on a strict t-conorm. IEEE Trans. Syst. Man Cyber.: Syst. 47(8), 2083–2099 (2016)

    MATH  Google Scholar 

  52. Liu, P., Liu, J., Chen, S.M.: Some intuitionistic fuzzy Dombi Bonferroni mean operators and their application to multi-attribute group decision making. J. Op. Res. Soc. 69(1), 1–24 (2018)

    MATH  Google Scholar 

  53. Mesiarová-Zemánková, A., Kelly, S., Ahmad, K.: Bonferroni mean with weighted interaction. IEEE Trans. Fuzzy Syst. 26(5), 3085–3096 (2018)

    MATH  Google Scholar 

  54. Zhao, H.: Multiattribute decision-making method with intuitionistic fuzzy Archimedean Bonferroni means. Math. Probl. Eng. 2021, 1–24 (2021)

    MathSciNet  MATH  Google Scholar 

  55. Jabeen, K., Khan, Q., Ullah, K., Senapati, T., Moslem, S.: An Approach to MADM based on Aczel-Alsina Power Bonferroni Aggregation Operators for \(q\)-rung Orthopair Fuzzy Sets. IEEE Access (2023)

  56. Liu, L., Wu, X., Chen, G.: Picture fuzzy interactional Bonferroni mean operators via strict triangular norms and applications to multi-criteria decision making. IEEE Trans. Fuzzy Syst.(2023)

  57. Nixon, J.D., Dey, P.K., Davies, P.A.: Which is the best solar thermal collection technology for electricity generation in north-west India? Evaluation of options using the analytical hierarchy process. Energy 35(12), 5230–5240 (2010)

    Google Scholar 

  58. Adar, E., Karatop, B., Bilgili, M.S., İnce, M.: Prioritization of the treatment and disposal methods of wastes containing polychlorinated biphenyl by fuzzy multi-criteria decision-making and risk assessment. Environ. Monit. Assess. 192, 1–15 (2020)

    Google Scholar 

  59. Almohaimeed, A.S., Suryanarayanan, S., O’Neill, P.: Reducing carbon dioxide emissions from electricity sector using demand side management, pp. 1–21. Recovery, Utilization, and Environmental Effects, Energy Sources, Part A (2021)

  60. Mandavgade, N.K., Kalbande, V.N., Bilawane, R.R., Kanojiya, M.T., Padole, C.U.: AHP for ranking effect of qualitative factors in uncertainty measurement of material testing. Mater. Today: Proc. 46, 7921–7925 (2021)

    Google Scholar 

  61. Zafaranlouei, N., Ghoushchi, S.J., Haseli, G.: Assessment of sustainable waste management alternatives using the extensions of the base criterion method and combined compromise solution based on the fuzzy Z-numbers. Environ. Sci. Pollut. Res. 30(22), 62121–62136 (2023)

    MATH  Google Scholar 

  62. Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication, p. 1947. University of Illinois Press, Urbana (1947)

    MATH  Google Scholar 

  63. Kaufmann, A.: Introduction to the Theory of Fuzzy Subsets. Academic press, Cambridge (1975)

    MATH  Google Scholar 

  64. Jain, R.: Decision making in the presence of fuzzy variables. IEEE Trans. Syst. Man Cybern. 6(10), 698–703 (1976)

    MATH  Google Scholar 

  65. Akyar, E., Akyar, H., Düzce, S.A.: A new method for ranking triangular fuzzy numbers. Int. J. Uncertain. Fuzziness Knowled.-Based Syst. 20(05), 729–740 (2012)

    MathSciNet  MATH  Google Scholar 

  66. Earthquake rescue robot: https://www.robot-magazine.fr/robot-serpent-sauver-vies/

  67. Earthquake rescue robot: https://www.army.mil/article/48456/robots_to_rescue_wounded_on_battlefield

  68. Firefighter robot: https://www.emicontrols.com/en/fire/mobile-products/firefighting-robot-taf60-taf60x/

  69. Water rescue robot: https://www.coolthings.com/emily-the-robot-lifeguard-to-the-rescue/

  70. Bomb disposal robot: https://depositphotos.com/221828934/stock-photo-bomb-disposal-robot-bomb-rendering.html

  71. Coburn, A. W., Spence, R. J., Pomonis, A.: Factors determining human casualty levels in earthquakes: mortality prediction in building collapse. In: Proceedings of the tenth world conference on Earthquake Engineering (Vol. 10, pp. 5989-5994). Balkema Rotterdam (1992)

  72. Wyss, M., Speiser, M., Tolis, S.: Earthquake fatalities and potency. Nat. Hazards 119(2), 1091–1106 (2022)

    Google Scholar 

  73. Winberg, D.: International fire death rate trends (2016)

  74. Sanghavi, P., Bhalla, K., Das, V.: Fire-related deaths in India in 2001: a retrospective analysis of data. The Lancet 373(9671), 1282–1288 (2009)

    MATH  Google Scholar 

  75. Fire Death and Injury Risk - US Fire Administration: https://www.usfa.fema.gov/statistics/deaths-injuries/#:~:text=U.S.%20overall%20fire%20death%20rate%20trend&text=In%202021%2C%20the%20fire%20death,11.4%20deaths%20per%20million%20population

  76. Peden, M.M., McGee, K.: The epidemiology of drowning worldwide. Inj. Control Saf. Promot. 10(4), 195–199 (2003)

    MATH  Google Scholar 

  77. Lin, C.Y., Wang, Y.F., Lu, T.H., Kawach, I.: Unintentional drowning mortality, by age and body of water: an analysis of 60 countries. Inj. Prev. 21(e1), e43–e50 (2014)

    Google Scholar 

  78. Kemp, A.F.: Explosive remnants of war: a case study of explosive ordnance disposal in Laos, 1974-2013 (Doctoral dissertation, University of Greenwich) (2014)

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Augustin.

Ethics declarations

Conflict of interest

There are no competing interests of the authors.

Appendix

Appendix

See Tables 1415, 1617 and 18.

The abbreviations are given in Table 19.

Table 14 Decision-maker’s opinions
Table 15 Requirements for the robots
Table 16 Aggregated decision matrix
Table 17 Normalized decision matrix
Table 18 Weighted normalize decision matrix
Table 19 Abbreviation and expansion

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sampathkumar, S., Augustin, F. Optimizing Robot Deployment in Hazardous Environment: MCDM Approach Using Field Performers Under Intuitionistic Dense Fuzzy Set. Int. J. Fuzzy Syst. 26, 1537–1566 (2024). https://doi.org/10.1007/s40815-024-01688-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-024-01688-1

Keywords