Skip to main content

Advertisement

Log in

State Observer-Based Composite Adaptive Fault-Tolerant Fuzzy Control for Uncertain Nonlinear Systems with Quantized Inputs

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This work researches the issue of adaptive fault-tolerant fuzzy tracking control for a class of nonlinear systems in strict-feedback form with quantized inputs. The fuzzy logic systems are utilized to approximate unknown functions, and a fuzzy state observer is built to estimate the unavailable states. Meanwhile, an improved hysteresis quantizer is introduced to achieve the quantized inputs for saving communication resources. To improve the approximation capacities of fuzzy logic systems, the compensated tracking errors and the prediction errors are used to construct the adaptive laws parameters. Furthermore, a composite adaptive fault-tolerant fuzzy control strategy is developed, which can guarantee proper operations of the systems when encountering actuator faults, and overcome the issue of “explosion of complexity” in the backstepping approach. It is strictly demonstrated that the system output can follow a desired signal within a small error zone and all signals of the closed-loop system are bounded. Finally, the simulation results are given to confirm the validity of the presented control strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Cai, J., Chen, G., Wu, X., Q. Yan, Q.,  Li,J.: Adaptive output feedback control for uncertain nonlinear systems with unknown modeling errors. Adv. Theory Simul. (2024). https://doi.org/10.1002/adts.202301136

    Article  MATH  Google Scholar 

  2. Mei,C., D. Guo, D., Chen, G., Cai, J., Li, J.: Event-triggered adaptive control for a class of nonlinear systems with dead-zone input. Electronics. (2024). https://doi.org/10.3390/electronics13010210

    Article  MATH  Google Scholar 

  3. Xu, B., Sun, F.: Composite intelligent learning control of strict-feedback systems with disturbance. IEEE Trans. Cybernetics 48(2), 730–741 (2017)

    Article  MATH  Google Scholar 

  4. Swaroop, D., Hedrick, J.K., Yip, P.P., Gerdes, J.C.: Dynamic surface control for a class of nonlinear systems. IEEE Trans. Autom. Control 45(10), 1893–1899 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Yanan, Q., Xiaogeng, L., Zhiyong, D., Jianxiong, C., YangQuan, C.: Backstepping dynamic surface control for a class of non-linear systems with time-varying output constraints. IET Control Theory Appl. (2015). https://doi.org/10.1049/iet-cta.2015.0019

    Article  MathSciNet  MATH  Google Scholar 

  6. Farrell, J.A., Polycarpou, M., Sharma, M., Dong, W.: Command filtered backstepping. IEEE Trans. Autom. Control 54(6), 1391–1395 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Li, Y., Niu, B., Zong, G., Zhao, J., Zhao, X.: Command filter-based adaptive neural finite-time control for stochastic nonlinear systems with time-varying full-state constraints and asymmetric input saturation. Int. J. Syst. Sci. 53(1), 199–221 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hu, J., Zhang, H.: Immersion and invariance based command-filtered adaptive backstepping control of vtol vehicles. Automatica 49(7), 2160–2167 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jin, Z., Zhang, W., Liu, S., Gu, M.: Command-filtered backstepping integral sliding mode control with prescribed performance for ship roll stabilization. Appl. Sci. 9(20), 4288 (2019)

    Article  MATH  Google Scholar 

  10. Zhao, Y., Zhang, H., Chen, Z., Wang, H., Zhao, X.: Adaptive neural decentralised control for switched interconnected nonlinear systems with backlash-like hysteresis and output constraints. Int. J. Syst. Sci. 53(7), 1545–1561 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  11. Liu, S., Zhang, L., Niu, B., Zhao, X., Ahmad, A.: Adaptive neural finite-time hierarchical sliding mode control of uncertain under-actuated switched nonlinear systems with backlash-like hysteresis. Inf. Sci. (2022). https://doi.org/10.1016/j.ins.2022.03.077

    Article  MATH  Google Scholar 

  12. Wang, T., Zhang, L., Xu, N., Khaild H.: Adaptive critic learning for approximate optimal event-triggered tracking control of nonlinear systems with prescribed performances. Int. J. Cont. (2023). https://doi.org/10.1080/00207179.2023.2250880

    Article  MATH  Google Scholar 

  13. Tang, F., Niu, B., Wang, H., Zhang, L., Zhao, X.: Adaptive fuzzy tracking control of switched mimo nonlinear systems with full state constraints and unknown control directions. IEEE Trans. Circ. Syst. II Express Briefs 69(6), 2912–2916 (2022)

    MATH  Google Scholar 

  14. Shen, Z., Zhag, L., Niu, B., Zha, N.: Event-based reachable set synthesis for delayed nonlinear semi-Markov systems. Chaos Solit. Fractals. (2023). https://doi.org/10.1016/j.chaos.2023.114284

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, Y.X., Tong, S., Yang, G.H.: Observer-based adaptive fuzzy decentralized event-triggered control of interconnected nonlinear system. IEEE Trans. Cybernetics 50(7), 3104–3112 (2019)

    Article  MATH  Google Scholar 

  16. Zhao, Y.,  Liang, H., Zong, G., Wang, H.: Event-Based Distributed Finite-Horizon H∞ Consensus Control for Constrained Nonlinear Multiagent Systems. IEEE Syst. J. (2023). https://doi.org/10.1109/JSYST.2023.3318525

    Article  MATH  Google Scholar 

  17. Zhao, H., Zong, G.,Wang, H., Zhao, X., Xu, N.: Zero-sum game-based hierarchical sliding-mode fault-tolerant tracking control for interconnected nonlinear systems via adaptive critic design. IEEE Trans. Automati. Sci. Eng. (2023). https://doi.org/10.1109/TASE.2023.3317902

    Article  MATH  Google Scholar 

  18. Zhang, L., Liang, J., Feng, Z., Zha, N.: Improved results of asynchronous mixed \({H}_{\infty}\) and passive control for discrete-time linear switched system with mode-dependent average dwell time. Chaos Solit. Fractals (2024). https://doi.org/10.1016/j.chaos.2023.114401

    Article  MathSciNet  MATH  Google Scholar 

  19. Huang, S., Zong, G., Wang, H., Zhao, X., Alharbi, K.H.: Command filter-based adaptive fuzzy self-triggered control for mimo nonlinear systems with time-varying full-state constraints. Int. J. Fuzzy Syst. (2023). https://doi.org/10.1007/s40815-023-01560-8

    Article  MATH  Google Scholar 

  20. Hojati, M., Gazor, S.: Hybrid adaptive fuzzy identification and control of nonlinear systems. IEEE Trans. Fuzzy Syst. 10(2), 198–210 (2002)

    Article  MATH  Google Scholar 

  21. Wang, L.X.: Design and analysis of fuzzy identifiers of nonlinear dynamic systems. IEEE Trans. Autom. Control 40(1), 11–23 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. Bellomo, D., Naso, D., Turchiano, B., Babuska, R.: Composite adaptive fuzzy control. IFAC Proc. Volumes 38(1), 97–102 (2005)

    Article  MATH  Google Scholar 

  23. Pan, Y., Zhou, Y., Sun, T., Er, M.J.: Composite adaptive fuzzy h? Tracking control of uncertain nonlinear systems. Neurocomputing 99, 15–24 (2013)

    Article  MATH  Google Scholar 

  24. Xu, B., Shi, Z., Yang, C., Sun, F.: Composite neural dynamic surface control of a class of uncertain nonlinear systems in strict-feedback form. IEEE Trans. Cybernetics 44(12), 2626–2634 (2014)

    Article  MATH  Google Scholar 

  25. Wang, D., Huang, J.: Neural network-based adaptive dynamic surface control for a class of uncertain nonlinear systems in strict-feedback form. IEEE Trans. Neural Netw. 16(1), 195–202 (2005)

    Article  MATH  Google Scholar 

  26. Zhao, N., Zhao, X., Zong, G., Xu, N.: Resilient event-triggered filtering for networked switched t-s fuzzy systems under denial-of-service attack. IEEE Trans. Fuzzy Syst. (2023). https://doi.org/10.1109/TFUZZ.2023.3345834

    Article  MATH  Google Scholar 

  27. Zhao, N., Tian, Y., Zhang, H., Herrera-Viedma, E.: Fuzzy-based adaptive event-triggered control for nonlinear cyber-physical systems against deception attacks via a single parameter learning method. Inf. Sci. (2023). https://doi.org/10.1016/j.ins.2023.119948

    Article  MATH  Google Scholar 

  28. Sun, T., Peng, L., Cheng, L., Hou, Z.G., Pan, Y.: Composite learning enhanced robot impedance control. IEEE Trans. Neural Netw. Learn. Syst. 31(3), 1052–1059 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Xu, B., Sun, F.: Composite intelligent learning control of strict-feedback systems with disturbance. IEEE Trans. Cybernetics 48(2), 730–741 (2017)

    Article  MATH  Google Scholar 

  30. Zhang, L., Zhang, X., Chang, X., Zhao, N.: Adaptive fault-tolerant control-based real-time reachable set synthesis of heterogeneous nonlinear singular multiagent systems with uncertain parameters. IEEE Trans. Automat. Sci. Eng. (2023). https://doi.org/10.1109/TASE.2023.3298343

    Article  MATH  Google Scholar 

  31. Zhang, C.H., Yang, G.H.: Event-triggered adaptive output feedback control for a class of uncertain nonlinear systems with actuator failures. IEEE Trans. Cybernetics 50(1), 201–210 (2018)

    Article  MATH  Google Scholar 

  32. Sun, K., Liu, L., Qiu, J., Feng, G.: Fuzzy adaptive finite-time fault-tolerant control for strict-feedback nonlinear systems. IEEE Trans. Fuzzy Syst. 29(4), 786–796 (2021)

    Article  MATH  Google Scholar 

  33. Xu, B., Liang, Y., Li, Y.X., Hou, Z.: Adaptive command filtered fixed-time control of nonlinear systems with input quantization. Appl. Math. Comput. 427, 127186 (2022)

    MathSciNet  MATH  Google Scholar 

  34. Ren, P., Wang, F., Zhu, R.: Adaptive fixed-time fuzzy control of uncertain nonlinear quantized systems. Int. J. Fuzzy Syst. 23(3), 794–803 (2021)

    Article  MATH  Google Scholar 

  35. Sheng, N., Ai, Z., Tang, J.: Fuzzy adaptive command filtered backstepping fault-tolerant control for a class of nonlinear systems with actuator fault. J. Franklin Inst. 358(13), 6526–6544 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  36. Li, Y., Tong, S., Li, T.: Composite adaptive fuzzy output feedback control design for uncertain nonlinear strict-feedback systems with input saturation. IEEE Trans. Cybernetics 45(10), 2299–2308 (2014)

    Article  MATH  Google Scholar 

  37. Zhang, J.J.: State observer-based adaptive neural dynamic surface control for a class of uncertain nonlinear systems with input saturation using disturbance observer. Neural Comput. Appl. 31(9), 4993–5004 (2019)

    Article  MATH  Google Scholar 

  38. Wang, C., Wen, C., Lin, Y., Wang, W.: Decentralized adaptive tracking control for a class of interconnected nonlinear systems with input quantization. Automatica (2017). https://doi.org/10.1016/j.automatica.2017.03.010

    Article  MATH  Google Scholar 

  39. Wang, L., Basin, M.V., Li, H., Lu, R.: Observer-based composite adaptive fuzzy control for nonstrict-feedback systems with actuator failures. IEEE Trans. Fuzzy Syst. 26(4), 2336–2347 (2018)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China, under Grant 62203064.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZiXuan Huang.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z., Niu, B., Zhao, N. et al. State Observer-Based Composite Adaptive Fault-Tolerant Fuzzy Control for Uncertain Nonlinear Systems with Quantized Inputs. Int. J. Fuzzy Syst. 26, 1664–1680 (2024). https://doi.org/10.1007/s40815-024-01696-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-024-01696-1

Keywords