Skip to main content

Advertisement

Log in

Rough Fuzzy K-Means Clustering Based on Parametric Decision-Theoretic Shadowed Set with Three-Way Approximation

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Rough fuzzy K-means (RFKM) decomposes data into clusters using partial memberships by underlying structure of incomplete information, which emphasizes the uncertainty of objects located in cluster boundary. In this scheme, the settings of cluster boundary merely depend on subjective judgment of perceptual experience. When confronted with the data exhibiting heavily overlap and imbalance, the boundary regions obtained by existing empirical schemes vary greatly accompanied by skewing of cluster center, which exerts considerable influence on the accuracy and stability of RFKM. This paper seeks to analyze and address this deficiency and then proposes an improved rough fuzzy K-means clustering based on parametric decision-theoretic shadowed set (RFKM-DTSS). Three-way approximation is implemented by incorporating a novel fuzzy entropy into the decision-theoretic shadowed set, which rationalizes cluster boundary through minimizing fuzzy entropy loss. Under the secondary adjustment method and improved update strategy of cluster center, the proposed RFKM-DTSS is thus featured by a powerful processing ability on class overlap and imbalance commonly seen in scenarios, such as fault detection and medical diagnosis with unclear decision boundaries. The effectiveness and robustness of the RFKM-DTSS are verified by the results of comparative experiments, demonstrating the superiority of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Rent this article via DeepDyve

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The datasets used and analysed during the current study are available in the UCI Machine Learning Repository.

References

  1. Han, J., Kamber, M.: Data Mining, Concepts and Techniques, 3rd edn. Morgan Kaufmann Publishers, San Francisco (2011)

    MATH  Google Scholar 

  2. Chanmee, S., Kesorn, K.: Semantic data mining in the information age: a systematic review. Int. J. Intell. Syst. 36, 3880–3916 (2021)

    Article  MATH  Google Scholar 

  3. Li, L., Wang, X., Liu, Z.: A novel intuitionistic fuzzy clustering algorithm based on feature selection for multiple object tracking. Int. J. Fuzzy Syst. 21, 1613–1628 (2019)

    Article  MATH  Google Scholar 

  4. Wang, Y., Qin, Q., Zhou, J.: Guided filter-based fuzzy clustering for general data analysis. Int. J. Fuzzy Syst. 25, 2036–2051 (2023)

    Article  MATH  Google Scholar 

  5. Zhang, T., Chen, L., Ma, F.: A modified rough c-means clustering algorithm based on hybrid imbalanced measure of distance and density. Int. J. Approx. Reason. 55, 1805–1818 (2014)

    Article  MATH  Google Scholar 

  6. Khameneh, A.Z., Kilicman, A., Ali, F.M.: Transitive fuzzy similarity multigraph-based model for alternative clustering in multi-criteria group decision-making problems. Int. J. Fuzzy Syst. 24, 2569–2590 (2022)

    Article  MATH  Google Scholar 

  7. Gao, Y., Wang, Z., Li, H.: Gaussian collaborative fuzzy c-means clustering. Int. J. Fuzzy Syst. 23, 1–17 (2021)

    Article  MATH  Google Scholar 

  8. Yan, M., Lin, H., Wang, Y.: A multi-stage hierarchical clustering algorithm based on centroid of tree and cut edge constraint. Inf. Sci. 557, 194–219 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  9. Santos, J., Syed, T., Naldi, M.C.: Hierarchical density-based clustering using MapReduce. IEEE Trans. Big Data. 7, 102–114 (2021)

    Article  Google Scholar 

  10. Atilgan, C., Tezel, B., Nasiboglu, E.: Efficient implementation and parallelization of fuzzy density based clustering. Inf. Sci. 575, 454–467 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  11. Rodriguez, A., Laio, A.: Clustering by fast search and find of density peaks. Science 344, 1492–1496 (2014)

    Article  MATH  Google Scholar 

  12. Qiu, T., Li, Y.: Fast LDP-MST: an efficient density-peak-based clustering method for large-size datasets. IEEE Trans. Knowl. Data Eng. 35, 4767 (2022)

    Article  MATH  Google Scholar 

  13. Liu, J., Li, T., Xie, P.: Urban big data fusion based on deep learning: an overview. Inf. Fusion. 53, 123–133 (2020)

    Article  MATH  Google Scholar 

  14. Zhang, T., Ma, F., Yue, D.: Interval type-2 fuzzy local enhancement based rough K-means clustering considering imbalanced clusters. IEEE Trans. Fuzzy Syst. 28, 1925–1939 (2020)

    Article  MATH  Google Scholar 

  15. Mishro, P.K., Agrawal, S., Panda, R.: A novel type-2 fuzzy c-means clustering for brain MR image segmentation. IEEE Trans. Cybern. 51, 3901–3912 (2021)

    Article  MATH  Google Scholar 

  16. Yang, X., Yu, F., Pedrycz, W.: Typical characteristic-based type-2 fuzzy c-means algorithm. IEEE Trans. Fuzzy Syst. 29, 1173–1187 (2021)

    Article  MATH  Google Scholar 

  17. Guo, R., Lin, T., Zulvia, F.: A hybrid metaheuristic and kernel intuitionistic fuzzy c-means algorithm for cluster analysis. Appl. Soft Comput. 67, 299–308 (2018)

    Article  MATH  Google Scholar 

  18. Jin, D., Bai, X.: Distribution information based intuitionistic fuzzy clustering for infrared ship segmentation. IEEE Trans. Fuzzy Syst. 28, 1557–1571 (2020)

    Article  MATH  Google Scholar 

  19. Lingras, P., West, C.: Interval set clustering of web users with rough K-means. J. Intell. Inform. Syst. 23, 5–16 (2004)

    Article  MATH  Google Scholar 

  20. Peters, G.: Some refinements of rough c-means clustering. Pattern Recogn. 39, 1481–1491 (2006)

    Article  MATH  Google Scholar 

  21. Mitra, S., Banka, H., Pedrycz, W.: Rough fuzzy collaborative clustering. IEEE Trans. Syst. Man Cybern. Part B 36, 795–805 (2006)

    Article  MATH  Google Scholar 

  22. Maji, P., Pal, S.: RFKM: a hybrid clustering algorithm using rough and fuzzy sets. Fund. Inf. 80, 475–496 (2007)

    MATH  Google Scholar 

  23. Begum, S.A., Devi, O.M.: A rough type-2 fuzzy clustering algorithm for MR image segmentation. Int. J. Comput. Appl. 54, 4–11 (2012)

    MATH  Google Scholar 

  24. Sivaguru, M.: Performance-enhanced rough k-means clustering. Soft. Comput. 25, 1595–1616 (2021)

    Article  MATH  Google Scholar 

  25. Peters, G.: Rough clustering utilizing the principle of indifference. Inform. Sci. 277, 358–374 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Vijaya, M.: A new initialization and performance measure for the rough k-means clustering. Soft. Comput. 24, 11605–11619 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yao, Y.Y.: Three-way decision and granular computing. Int. J. Approx. Reason. 103, 107–123 (2018)

    Article  MATH  Google Scholar 

  28. Zhan, J., Ye, J., Ding, W.: A novel three-way decision model based on utility theory in incomplete fuzzy decision systems. IEEE Trans. Fuzzy Syst. 30, 2210–2226 (2022)

    Article  MATH  Google Scholar 

  29. Yang, X., Li, Y., Liu, D.: Hierarchical fuzzy rough approximations with three-way multigranularity learning. IEEE Trans. Fuzzy Syst. Fuzzy Syst. 30, 3486–3500 (2022)

    Article  MATH  Google Scholar 

  30. Yao, Y.Y.: The geometry of three-way decision. Appl. Intell. 51, 6298–6325 (2021)

    Article  MATH  Google Scholar 

  31. Pawlak, Z., Skowron, A.: Rough sets: some extensions. Inform. Sci. 177, 28–40 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang, P., Li, T., Wang, G.: Multi-source information fusion based on rough set theory: a review. Inf. Fusion. 68, 85–117 (2021)

    Article  MATH  Google Scholar 

  33. Wei, W., Liang, J.: Information fusion in rough set theory: an overview. Inf. Fusion. 48, 107–118 (2019)

    Article  MATH  Google Scholar 

  34. Pedrycz, W.: Shadowed sets: representing and processing fuzzy sets. IEEE Trans. Syst. Man Cybern. Part B 28, 103–109 (1998)

    Article  MATH  Google Scholar 

  35. Pedrycz, W.: Interpretation of clusters in the framework of shadowed sets. Pattern Recogn. Lett. 26, 2439–2449 (2005)

    Article  MATH  Google Scholar 

  36. Gao, M., Zhang, Q., Zhao, F.: Mean-entropy-based shadowed sets: a novel three-way approximation of fuzzy sets. Int. J. Approx. Reason. 120, 102–124 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhang, Q., Gao, M., Zhao, F., Wang, G.: Fuzzy-entropy-based game theoretic shadowed sets: a novel game perspective from uncertainty. IEEE Trans. Fuzzy Syst. 30, 597–609 (2022)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editors and anonymous referees for their helpful suggestions in the improvement of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tengfei Zhang.

Appendix A

Appendix A

(1) If El(ae | x) ≤ El(as | x), then perform action ae and the value of uin is elevated to 1.

$$ \Leftrightarrow \left( {\psi - \psi \times \frac{{\left( {u_{in} - center\left( {u_{ij} } \right)} \right)^{{2}} }}{{center\left( {u_{ij} } \right)^{2} }}} \right) \le \left| {\left( {\psi - \psi \times \frac{{\left( {u_{in} - center\left( {u_{ij} } \right)} \right)^{{2}} }}{{center\left( {u_{ij} } \right)^{2} }}} \right) - \left( {\psi - \psi \times \frac{{\left( {\delta_{1}^{*} - center\left( {u_{ij} } \right)} \right)^{{2}} }}{{center\left( {u_{ij} } \right)^{2} }}} \right)} \right|. $$

(a) \(\left( {\psi - \psi \times \frac{{\left( {\delta_{1}^{*} - center\left( {u_{ij} } \right)} \right)^{{2}} }}{{center\left( {u_{ij} } \right)^{2} }}} \right) \le 0\), due to the condition \(\frac{{\mathop {max}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right) - \mathop {min}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right)}}{2}\) < δ1* < \(\frac{{\mathop {max}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right) + \mathop {min}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right)}}{2}\), it is obvious that \(\left( {\psi - \psi \times \frac{{\left( {\delta_{1}^{*} - center\left( {u_{ij} } \right)} \right)^{{2}} }}{{center\left( {u_{ij} } \right)^{2} }}} \right) \ge 0\), so the inequality (a) does not hold.

(b) \(2\psi \times \frac{{\left( {u_{in} - center\left( {u_{ij} } \right)} \right)^{{2}} }}{{center\left( {u_{ij} } \right)^{2} }} - \psi \times \frac{{\left( {\delta_{1}^{*} - center\left( {u_{ij} } \right)} \right)^{{2}} }}{{center\left( {u_{ij} } \right)^{2} }} - \psi \ge 0,\)

$$ \Leftrightarrow \mu_{in} \le \frac{{\left[ {\mathop {min}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right) + \mathop {max}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right)} \right] - \sqrt {\mathop {min}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right)^{2} + \mathop {max}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right)^{2} - 2\delta_{1}^{*} \left[ {\mathop {min}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right) + \mathop {max}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right) - \delta_{1}^{*} } \right]} }}{2}, $$
$$ {\text{or }}\mu_{in} \ge \frac{{\left[ {\mathop {min}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right) + \mathop {max}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right)} \right] + \sqrt {\mathop {min}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right)^{2} + \mathop {max}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right)^{2} - 2\delta_{1}^{*} \left[ {\mathop {min}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right) + \mathop {max}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right) - \delta_{1}^{*} } \right]} }}{2}, $$
$$ \Leftrightarrow \mu_{in} \le \frac{{\left[ {\mathop {min}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right) + \mathop {max}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right)} \right] - \sqrt {\mathop {min}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right)^{2} + \mathop {max}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right)^{2} - 2\delta_{1}^{*} \delta_{2}^{*} } }}{2}{\text{ or }}\mu_{in} \ge \frac{{\left[ {\mathop {min}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right) + \mathop {max}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right)} \right] + \sqrt {\mathop {min}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right)^{2} + \mathop {max}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right)^{2} - 2\delta_{1}^{*} \delta_{2}^{*} } }}{2}. $$

(2) If El(as | x) ≤ El(ae | x), then perform action as and the value of uA(x) is reduced to δ*.

$$ \Leftrightarrow \left| {\left( {\psi - \psi \times \frac{{\left( {u_{in} - center\left( {u_{ij} } \right)} \right)^{{2}} }}{{center\left( {u_{ij} } \right)^{2} }}} \right) - \left( {\psi - \psi \times \frac{{\left( {\delta_{1}^{*} - center\left( {u_{ij} } \right)} \right)^{{2}} }}{{center\left( {u_{ij} } \right)^{2} }}} \right)} \right| \le \left( {\psi - \psi \times \frac{{\left( {u_{in} - center\left( {u_{ij} } \right)} \right)^{{2}} }}{{center\left( {u_{ij} } \right)^{2} }}} \right). $$

(a) \(\left( {\psi - \psi \times \frac{{\left( {\delta_{1}^{*} - center\left( {u_{ij} } \right)} \right)^{{2}} }}{{center\left( {u_{ij} } \right)^{2} }}} \right) \ge 0\), due to the condition \(\frac{{\mathop {max}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right) - \mathop {min}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right)}}{2}\) < δ1* < \(\frac{{\mathop {max}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right) + \mathop {min}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right)}}{2}\), it is obvious that \(\left( {\psi - \psi \times \frac{{\left( {\delta_{1}^{*} - center\left( {u_{ij} } \right)} \right)^{{2}} }}{{center\left( {u_{ij} } \right)^{2} }}} \right) \ge 0\), so the inequality (a) holds.

(b) \(2\psi \times \frac{{\left( {u_{in} - center\left( {u_{ij} } \right)} \right)^{{2}} }}{{center\left( {u_{ij} } \right)^{2} }} - \psi \times \frac{{\left( {\delta_{1}^{*} - center\left( {u_{ij} } \right)} \right)^{{2}} }}{{center\left( {u_{ij} } \right)^{2} }} - \psi \le 0,\)

$$ \Leftrightarrow \frac{{\left[ {\mathop {min}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right) + \mathop {max}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right)} \right] - \sqrt {\mathop {min}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right)^{2} + \mathop {max}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right)^{2} - 2\delta_{1}^{*} \left[ {\mathop {min}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right) + \mathop {max}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right) - \delta_{1}^{*} } \right]} }}{2} \le \mu_{in}, $$
$$ \le \frac{{\left[ {\mathop {min}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right) + \mathop {max}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right)} \right] - \sqrt {\mathop {min}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right)^{2} + \mathop {max}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right)^{2} - 2\delta_{1}^{*} \left[ {\mathop {min}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right) + \mathop {max}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right) - \delta_{1}^{*} } \right]} }}{2}, $$
$$ \Leftrightarrow \frac{{\left[ {\mathop {min}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right) + \mathop {max}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right)} \right] - \sqrt {\mathop {min}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right)^{2} + \mathop {max}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right)^{2} - 2\delta_{1}^{*} \delta_{2}^{*} } }}{2} \, \le \, \mu_{in} \le \frac{{\left[ {\mathop {min}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right) + \mathop {max}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right)} \right] + \sqrt {\mathop {min}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right)^{2} + \mathop {max}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right)^{2} - 2\delta_{1}^{*} \delta_{2}^{*} } }}{2}. $$

Suppose the condition \(\mu_{in} \ge \delta_{1}^{*}\), it can be seen that, if \(\mu_{in} \ge \frac{{\left[ {\mathop {min}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right) + \mathop {max}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right)} \right] + \sqrt {\mathop {min}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right)^{2} + \mathop {max}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right)^{2} - 2\delta_{1}^{*} \delta_{2}^{*} } }}{2}\), a decision action ae is performed; if \(\mu_{in} \le \frac{{\left[ {\mathop {min}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right) + \mathop {max}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right)} \right] + \sqrt {\mathop {min}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right)^{2} + \mathop {max}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right)^{2} - 2\delta_{1}^{*} \delta_{2}^{*} } }}{2}\), a decision action as is performed. Thus, the threshold α can be obtained \(\alpha = \frac{{\left[ {\mathop {min}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right) + \mathop {max}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right)} \right] + \sqrt {\mathop {min}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right)^{2} + \mathop {max}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right)^{2} - 2\delta_{1}^{*} \delta_{2}^{*} } }}{2}\).

(3) If El(as | x) ≤ El(ar | x), then perform action as and the value of uA(x) is elevated to δ*.

(4) If El(ar | x) ≤ El(as | x), then perform action ar and the value of uA(x) is reduced to 0.

The decision rules (3) and (4) can be proved similar to (1) and (2). Similarly, the threshold β can be obtained, and the value is \(\beta = \frac{{\left[ {\mathop {min}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right) + \mathop {max}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right)} \right] - \sqrt {\mathop {min}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right)^{2} + \mathop {max}\limits_{{x_{j} \in \hat{C}_{i} }} \left( {u_{ij} } \right)^{2} - 2\delta_{1}^{*} \delta_{2}^{*} } }}{2}.\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhang, T., Peng, C. et al. Rough Fuzzy K-Means Clustering Based on Parametric Decision-Theoretic Shadowed Set with Three-Way Approximation. Int. J. Fuzzy Syst. 26, 1698–1715 (2024). https://doi.org/10.1007/s40815-024-01700-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-024-01700-8

Keywords

Navigation