Skip to main content

Advertisement

Log in

Adaptive Fuzzy Tracking Control for Stochastic Nonlinear Systems with Full-State Constraints

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This study focuses on addressing the challenge of adaptive fuzzy tracking control for stochastic nonlinear systems while considering full-state constraints. To tackle this issue, we introduce a fuzzy logic system to approximate the unknown nonlinear terms in the system. Additionally, a barrier Lyapunov function is utilized to confine the system state within a specific range. In order to design a novel tracking controller, the backstepping design method and the fuzzy control approach are combined. To optimize system performance, a hysteresis quantizer is integrated. To evaluate the effectiveness of the proposed control strategy, two simulation examples are presented. The simulation results demonstrate that the proposed control strategy effectively limits all state variables to a predefined range. Additionally, the tracking error of the system steadily converges to a negligible range near zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Caraballo, L.E., Díaz-Báñez, J.M., Fabila-Monroy, R., Hidalgo-Toscano, C.: Stochastic strategies for patrolling a terrain with a synchronized multi-robot system. Eur. J. Oper. Res. 301(3), 1099–1116 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  2. Xie, L., Luo, Y., Su, S., Wei, H.: Graph regularized structured output svm for early expression detection with online extension. IEEE Transact. Cybernet. 53(3), 1419–1431 (2023)

    Article  MATH  Google Scholar 

  3. Tong, J., Xie, L., Yang, W., Zhang, K., Zhao, J.: Enhancing time seriesforecasting: A hierarchical transformer with probabilistic decomposition representation. Inform. Sci. 119410 (2023)

    MATH  Google Scholar 

  4. Reshniak, V., Khaliq, A., Voss, D.: Slow-scale split-step tau-leap method for stiff stochastic chemical systems. J. Comput. Appl. Math. 361, 79–96 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hamdi, I.E., Vargas, A.N., Bouzahir, H., Oliveira, R.C.L.F., Acho, L.: Robust stability of stochastic systems with varying delays: application to rlc circuit with intermittent closed-loop. Appl. Math. Comput. 411, 126541 (2021)

    MathSciNet  MATH  Google Scholar 

  6. Zhao, J., Qiu, L., Xie, X., Sun, Z.-Y.: Finite-time stabilization of stochastic nonlinear systems and its applications in ship maneuvering systems. IEEE Trans. Fuzzy Syst. 32(3), 1023–1035 (2024)

    Article  MATH  Google Scholar 

  7. Zhou, J., Wen, C., Yang, G.: Adaptive backstepping stabilization of nonlinear uncertain systems with quantized input signal. IEEE Trans. Autom. Control 59(2), 460–464 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Xie, L., Guo, W., Wei, H., Tang, Y., Tao, D.: Efficient Unsupervised Dimension Reduction for Streaming Multi-view Data[J]. IEEE Transactions on Cybernetics, 2022,52(3):1772-1784.

  9. Chen, G., Jianwei Xia, J.H., Park, H.S., Zhuang, G.: Sampled-data synchronization of stochastic Markovian jump neural networks with time-varying delay. IEEE Trans. Neural Netw. Learn. Syst. 33(8), 3829–3841 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhuang, G., Xia, J., Feng, J., Sun, W., Zhang, B.: Admissibilization for implicit jump systems with mixed retarded delays based on reciprocally convex integral inequality and barbalat’s lemma. IEEE Trans. Syst. Man. Cybern. 51(11), 6808–6818 (2020)

    Article  MATH  Google Scholar 

  11. Chen, B., Lin, C.: Finite-time stabilization-based adaptive fuzzy control design. IEEE Trans. Fuzzy Syst. 29(8), 2438–2443 (2021)

    Article  MATH  Google Scholar 

  12. Fang, Y., Fei, J., Wang, T.: Adaptive backstepping fuzzy neural controller based on fuzzy sliding mode of active power filter. IEEE Access 8, 96027–96035 (2020)

    Article  MATH  Google Scholar 

  13. Zhumu, F., Wang, N., Song, S., Wang, T.: Adaptive fuzzy finite-time tracking control of stochastic high-order nonlinear systems with a class of prescribed performance. IEEE Trans. Fuzzy Syst. 30(1), 88–96 (2022)

    Article  MATH  Google Scholar 

  14. Jian, W., Sun, Y., Zhao, Q.: Adaptive asymptotic control of stochastic systems with state delay and unknown control directions. IEEE Trans. Circuits Syst. II Express Briefs 69(1), 174–178 (2022)

    MATH  Google Scholar 

  15. Meng, Q., Ma, Q., Zhou, G.: Adaptive output feedback control for stochastic uncertain nonlinear time-delay systems. IEEE Trans. Circuits Syst. II Express Briefs 69(7), 3289–3293 (2022)

    MATH  Google Scholar 

  16. Chao, D., Qi, R., Jiang, B.: Adaptive fault-tolerant control for the ascent phase of hypersonic vehicle with time-varying full state constraints. Aerosp. Sci. Technol. 131, 108006 (2022)

    Article  MATH  Google Scholar 

  17. Sankaranarayanan, V.N., Banerjee, A., Satpute, S., Roy, S., Nikolakopoulos, G.: Adaptive control for a payload carrying spacecraft with state constraints. Control. Eng. Pract. 135, 105515 (2023)

    Article  MATH  Google Scholar 

  18. Dong, B., Shi, Y., Xie, W., Chen, W., Zhang, W.: Learning-based robust optimal tracking controller design for unmanned underwater vehicles with full-state and input constraints. Ocean Eng. 271, 113757 (2023)

    Article  MATH  Google Scholar 

  19. Liu, H., Meng, B., Tian, X.: Finite-time prescribed performance trajectory tracking control for underactuated autonomous underwater vehicles based on a tan-type barrier lyapunov function. IEEE Access 10, 53664–53675 (2022)

    Article  MATH  Google Scholar 

  20. Dasgupta, R., Roy, S.B., Bhasin, S.: Non-singular trajectory tracking control of a pitch-constrained quad-rotorcraft using integral barrier lyapunov function. In: 2020 American Control Conference (ACC), 3788–3795 (2020)

  21. Zhao, W., Liu, Y., Liu, L.: Observer-based adaptive fuzzy tracking control using integral barrier lyapunov functionals for a nonlinear system with full state constraints. IEEE/CAA J. Autom. Sin. 8(3), 617–627 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  22. Bin, X., Shi, Z., Sun, F., He, W.: Barrier lyapunov function based learning control of hypersonic flight vehicle with aoa constraint and actuator faults. IEEE Trans. Cybern. 49(3), 1047–1057 (2019)

    Article  MATH  Google Scholar 

  23. Sun, W., Wenxing Yuan, Yu., Shao, Z.S., Zhao, J., Sun, Q.: Adaptive fuzzy control of strict-feedback nonlinear time-delay systems with full-state constraints. Int. J. Fuzzy Syst. 20, 2556–2565 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Yuan, X., Yang, B., Pan, X., Zhao, X.: Fuzzy control of nonlinear strict-feedback systems with full-state constraints: a new barrier function approach. IEEE Trans. Fuzzy Syst. 30(12), 5419–5430 (2022)

    Article  MATH  Google Scholar 

  25. Yuan, Y., Zhao, J., Sun, Z.-Y., Xie, X.: Practically fast finite-time stability in the mean square of stochastic nonlinear systems: application to one-link manipulator. IEEE Trans. Syst. Man Cybern. 54(1), 312-323 (2024)

  26. Xie, X., Wei, C., Zhou, G., Shi, K.: Relaxed resilient fuzzy stabilization of discrete-time Takagi-Sugeno systems via a higher order time-variant balanced matrix method. IEEE Trans. Fuzzy Syst. 30(11), 5044–5050 (2022)

    Article  MATH  Google Scholar 

  27. Zhang, Y., Xie, L., Zhang, K.: Fast finite-time fuzzy control for a class of nonstrict feedback systems with input quantization. Int. J. Fuzzy Syst. 25(3), 1213–1226 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  28. Xing, J.-W., Peng, C., Cao, Z.: Event-triggered adaptive fuzzy tracking control for high-order stochastic nonlinear systems. J. Franklin Inst. 359(13), 6893–6914 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  29. Liu, Y., Zhu, Q., Fan, X.: Event-triggered adaptive fuzzy control for stochastic nonlinear time-delay systems. Fuzzy Sets Syst. 452, 42–60 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  30. Patel, A., Kosko, B.: Noise benefits in quantizer-array correlation detection and watermark decoding. IEEE Trans. Signal Process. 59(2), 488–505 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sun, H., Hou, L.: Event-triggered adaptive fault-tolerant bounded control for a class of non-strict feedback nonlinear systems with input quantization. Fuzzy Sets Syst. (2023)

  32. Jing, W., Sun, W., Shun-Feng, S., Xia, J.: Neural-based adaptive control for nonlinear systems with quantized input and the output constraint. Appl. Math. Comput. 413, 126637 (2022)

    MathSciNet  MATH  Google Scholar 

  33. Liu, Y., Zhu, Q., Zhao, N.: Event-triggered adaptive fuzzy control for switched nonlinear systems with state constraints. Inf. Sci. 562, 28–43 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhang, L., Che, W.-W., Chen, B., Lin, C.: Adaptive fuzzy output-feedback consensus tracking control of nonlinear multiagent systems in prescribed performance. IEEE Trans. Cybern. 53(3), 1932–1943 (2022)

    Article  MATH  Google Scholar 

  35. Zhang, L., Che, W.-W., Deng, C., Zheng-Guang, W.: Prescribed performance control for multiagent systems via fuzzy adaptive event-triggered strategy. IEEE Trans. Fuzzy Syst. 30(12), 5078–5090 (2022)

    Article  MATH  Google Scholar 

  36. Chang, X., Jing, Y., Gao, X., Liu, X.: \(h_\infty\) tracking control design of ts fuzzy systems. Control Decis. 23(3), 329 (2008)

    MathSciNet  MATH  Google Scholar 

  37. Yuan, X., Chen, B., Lin, C.: Prescribed finite-time adaptive neural tracking control for nonlinear state-constrained systems: Barrier function approach. IEEE Trans. Neural Netw. Learn. Syst. 33(12), 7513–7522 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang, L.-X., Mendel, J.M., et al.: Fuzzy basis functions, universal approximation, and orthogonal least-squares learning. IEEE Trans. Neural Netw. 3(5), 807–814 (1992)

    Article  MATH  Google Scholar 

  39. Polycarpou, M.M., Ioannou, P.A.: A robust adaptive nonlinear control design. In: 1993 American Control Conference, pp. 1365–1369. IEEE (1993)

  40. Wang, H., Liu, K., Liu, X., Chen, B., Lin, C.: Neural-based adaptive output-feedback control for a class of nonstrict-feedback stochastic nonlinear systems. IEEE Trans. Cybern. 45(9), 1977–1987 (2014)

    Article  MATH  Google Scholar 

  41. Wang, T., Qiu, J., Gao, H.: Adaptive neural control of stochastic nonlinear time-delay systems with multiple constraints. IEEE Trans. Syst. Man Cybern. 47(8), 1875–1883 (2016)

    Article  MATH  Google Scholar 

  42. Li, M., Chang, X.: Fuzzy tracking control for discrete-time nonlinear network systems with privacy protection and dynamic quantization. Int. J. Fuzzy Syst. 25(3), 1227–1238 (2023)

    Article  MATH  Google Scholar 

  43. Chen, J., Shengyuan, X., Jia, X., Zhang, B.: Novel summation inequalities and their applications to stability analysis for systems with time-varying delay. IEEE Trans. Autom. Control 62(5), 2470–2475 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  44. Jin, X., Li, Y.-X.: Adaptive fuzzy control of uncertain stochastic nonlinear systems with full state constraints. Inf. Sci. 574, 625–639 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 62372104, in part by the Guangdong Basic and Applied Basic Research Foundation under Grant 2022A1515110518, in part by the Shenzhen Science and Technology Program under Grant JCYJ20210324121213036. Besides, we thank the Big Data Computing Center of Southeast University for providing the facility support on the numerical calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liping Xie.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Zhang, Y., Chen, S. et al. Adaptive Fuzzy Tracking Control for Stochastic Nonlinear Systems with Full-State Constraints. Int. J. Fuzzy Syst. 26, 1840–1851 (2024). https://doi.org/10.1007/s40815-024-01706-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-024-01706-2

Keywords