Skip to main content

Advertisement

Log in

An Adaptive Event-Triggered Filtering for Fuzzy Markov Switching Systems with Quantization and Deception Attacks: A Non-stationary Approach

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper examines the event-triggered filtering problem related to discrete-time nonlinear systems that are described by interval type-2 (IT2) fuzzy models. The filter being studied is prone to a non-stationary Markovian process when both quantization output and deception attack are taken into account simultaneously. It is proposed to implement an asynchronous IT2 fuzzy filter characterized by two different piecewise-stationary Markov chains specifying the deception attacks and the modes of the system. A new event-triggering protocol (ETP) is investigated as a means of reducing unnecessary signal transmissions on the communication channel. Based on the linear matrix inequality analysis and using the information on upper and lower membership functions, it is demonstrated that stochastic sufficient conditions exist for the desired filter such that it exhibits mean square stability and achieves the prescribed mixed \(H_\infty \) and passivity performance index. Moreover, an optimization-based problem for computing filter gains is proposed. An experimental numerical illustration based on a truck-trailer system is used to validate the developed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

Not applicable.

References

  1. Ahmad, I., Ge, X., Han, Q.-L.: Decentralized dynamic event-triggered communication and active suspension control of in-wheel motor driven electric vehicles with dynamic damping. IEEE/CAA J. Autom. Sin. 8(5), 971–986 (2021)

    MathSciNet  MATH  Google Scholar 

  2. Cai, X., Shi, K., She, K., Zhong, S., Tang, Y.: Quantized sampled-data control tactic for T-S fuzzy NCS under stochastic cyber-attacks and its application to truck-trailer system. IEEE Trans. Veh. Technol. 71(7), 7023–7032 (2022)

    MATH  Google Scholar 

  3. Chang, X.-H., Liu, Y.: Robust \(\cal{H} _\infty \) filtering for vehicle sideslip angle with quantization and data dropouts. IEEE Trans. Veh. Technol. 69(10), 10435–10445 (2020)

    MATH  Google Scholar 

  4. Chatterjee, K., Singh, V.K., Prasun, P., Kamal, S., Ghosh, S., Dinh, T.N.: Fixed-time event-triggered control under denial-of-service attacks. Eur. J. Control. 69, 100765 (2023)

    MathSciNet  MATH  Google Scholar 

  5. Chen, Q.-X., Chang, X.-H.: Resilient filter of nonlinear network systems with dynamic event-triggered mechanism and hybrid cyber attack. Appl. Math. Comput. 434, 127419 (2022)

    MathSciNet  MATH  Google Scholar 

  6. Chen, J., Junwei, L., Shengyuan, X.: Summation inequality and its application to stability analysis for time-delay systems. IET Control Theory Appl. 10(4), 391–395 (2016)

    MathSciNet  MATH  Google Scholar 

  7. Chen, M., Karimi, H.R., Sun, J.: Observer-based finite time \( H_\infty \) control of nonlinear discrete time-varying systems with an adaptive event-triggered mechanism. J. Franklin Inst. 357(16), 11668–11689 (2020)

    MathSciNet  MATH  Google Scholar 

  8. Cheng, J., Zhan, Y.: Nonstationary \(l_2-l_\infty \) filtering for markov switching repeated scalar nonlinear systems with randomly occurring nonlinearities. Appl. Math. Comput. 365, 124714 (2020)

    MathSciNet  MATH  Google Scholar 

  9. Cheng, J.H.J., Park, X.Z., Karimi, H.R., Cao, J.: Quantized nonstationary filtering of networked Markov switching RSNSS: a multiple hierarchical structure strategy. IEEE Trans. Autom. Control 65(11), 4816–4823 (2020)

    MathSciNet  MATH  Google Scholar 

  10. Cheng, J.H.J., Park, J.C., Qi, W.: A hidden mode observation approach to finite-time SOFC of Markovian switching systems with quantization. Nonlinear Dyn. 100(1), 509–521 (2020)

    MATH  Google Scholar 

  11. Cheng, J., Park, H., Chadli, M.: Peak-to-peak fuzzy filtering of nonlinear discrete-time systems with Markov communication protocol. Inf. Sci. 607, 361–376 (2022)

    MATH  Google Scholar 

  12. Chu, X., Li, M.: \(H_\infty \) observer-based event-triggered sliding mode control for a class of discrete-time nonlinear networked systems with quantizations. ISA Trans. 79, 13–26 (2018)

    MATH  Google Scholar 

  13. Chu, X., Li, M.: \(h_{\infty }\) non-fragile observer-based dynamic event-triggered sliding mode control for nonlinear networked systems with sensor saturation and dead-zone input. ISA Trans. 94, 93–107 (2019)

    MATH  Google Scholar 

  14. Dong, S., Fang, M., Shi, P., Wu, Z.-G., Zhang, D.: Dissipativity-based control for fuzzy systems with asynchronous modes and intermittent measurements. IEEE Trans. Cybern. 50(6), 2389–2399 (2019)

    MATH  Google Scholar 

  15. Dong, S., Fang, M., Shi, P., Zheng-Guang, W., Zhang, D.: Dissipativity-based control for fuzzy systems with asynchronous modes and intermittent measurements. IEEE Trans. Cybern. 50(6), 2389–2399 (2020)

    MATH  Google Scholar 

  16. Hamidi, F., Aloui, M., Jerbi, H., Kchaou, M., Abbassi, R., Popescu, D., Aoun, S.B., Dimon, C.: Chaotic particle swarm optimisation for enlarging the domain of attraction of polynomial nonlinear systems. Electronics 9(10), 1704 (2020)

    Google Scholar 

  17. Hou, L., Chen, D., He, C.: Finite-time nonfragile dissipative control for discrete-time neural networks with Markovian jumps and mixed time-delays. Complexity (2019). https://doi.org/10.1155/2019/5748923

    Article  MATH  Google Scholar 

  18. Hsieh, C.-S.: Robust two-stage Kalman filters for systems with unknown inputs. IEEE Trans. Autom. Control 45(12), 2374–2378 (2000)

    MathSciNet  MATH  Google Scholar 

  19. Jwo, D.-J., Wang, S.-H.: Adaptive fuzzy strong tracking extended Kalman filtering for GPS navigation. IEEE Sens. J. 7(5), 778–789 (2007)

    MATH  Google Scholar 

  20. Kaviarasan, B., Kwon, O.-M., Park, M.J., Sakthivel, R.: Reduced-order filtering for semi-Markovian jump systems against randomly occurring false data injection attacks. Appl. Math. Comput. 444, 127832 (2023)

    MathSciNet  MATH  Google Scholar 

  21. Kavikumar, R., Sakthivel, R., Kwon, O.M., Kaviarasan, B.: Reliable non-fragile memory state feedback controller design for fuzzy Markov jump systems. Nonlinear Anal. Hybrid Syst 35, 100828 (2020)

    MathSciNet  MATH  Google Scholar 

  22. Kchaou, M., Regaieg, M.A., Al-Hajjaji, A.: Quantized asynchronous extended dissipative observer-based sliding mode control for Markovian jump TS fuzzy systems. J. Franklin Inst. 359(17), 9636–9665 (2022)

    MathSciNet  MATH  Google Scholar 

  23. Latrech, C., Kchaou, M., Gueguen, H.: Networked non-fragile \( H_\infty \) static output feedback control design for vehicle dynamics stability: a descriptor approach. Eur. J. Control. 40, 13–26 (2018)

    MathSciNet  MATH  Google Scholar 

  24. Li, H., Shi, P., Yao, D., Wu, L.: Observer-based adaptive sliding mode control for nonlinear Markovian jump systems. Automatica 64, 133–142 (2016)

    MathSciNet  MATH  Google Scholar 

  25. Li, J., Zhang, Q., Yan, X.-G., Spurgeon, S.K.: Integral sliding mode control for Markovian jump T-S fuzzy descriptor systems based on the super-twisting algorithm. IET Control Theory Appl. 11(8), 1134–1143 (2017)

    MathSciNet  MATH  Google Scholar 

  26. Li, Q., Wang, Z., Sheng, W., Alsaadi, F.E., Alsaadi, F.E.: Dynamic event-triggered mechanism for H\(_\infty \) non-fragile state estimation of complex networks under randomly occurring sensor saturations. Inf. Sci. 509, 304–316 (2020)

    MathSciNet  MATH  Google Scholar 

  27. Li, F., Cao, X., Zhou, C., Yang, C.: Event-triggered asynchronous sliding mode control of CSTR based on markov model. J. Franklin Inst. 358(9), 4687–4704 (2021)

    MathSciNet  MATH  Google Scholar 

  28. Liu, J., Yuanyuan, G., Cao, J., Fei, S.: Distributed event-triggered \( {H}_\infty \) filtering over sensor networks with sensor saturations and cyber-attacks. ISA Trans. 81, 63–75 (2018)

    MATH  Google Scholar 

  29. Liu, J., Yin, T., Cao, J., Yue, D., Karimi, H.R.: Security control for T-S fuzzy systems with adaptive event-triggered mechanism and multiple cyber-attacks. IEEE Trans. Syst. Man Cybern. 51(10), 6544–6554 (2021)

    MATH  Google Scholar 

  30. Liu, J., Zhang, N., Li, Y., Xie, X.: H\(_\infty \) filter design for discrete-time networked systems with adaptive event-triggered mechanism and hybrid cyber attacks. J. Franklin Inst. 358(17), 9325–9345 (2021)

    MathSciNet  MATH  Google Scholar 

  31. Lv, C., Chen, J., Lv, X., Zhang, Z.: Finite-time \(H_\infty \) control for interval type-2 fuzzy singular systems via switched fuzzy models and static output feedback. Nonlinear Anal. Hybrid Syst. 45, 101206 (2022)

    MathSciNet  MATH  Google Scholar 

  32. Ma, Y., Jia, X., Zhang, Q.: Robust finite-time non-fragile memory \(H_\infty \) control for discrete-time singular Markovian jumping systems subject to actuator saturation. J. Franklin Inst. 354(18), 8256–8282 (2017)

    MathSciNet  MATH  Google Scholar 

  33. Ma, L., Wang, Z., Han, Q.-L., Lam, H.-K.: Envelope-constrained \(H_\infty \) filtering for nonlinear systems with quantization effects: the finite horizon case. Automatica 93, 527–534 (2018)

    MathSciNet  MATH  Google Scholar 

  34. Pan, Y., Yang, G.-H.: Event-based output tracking control for fuzzy networked control systems with network-induced delays. Appl. Math. Comput. 346, 513–530 (2019)

    MathSciNet  MATH  Google Scholar 

  35. Qi, W., Park, J.H., Cheng, J., Chen, X.: Stochastic stability and \(L_1\)-gain analysis for positive nonlinear semi-markov jump systems with time-varying delay via ts fuzzy model approach. Fuzzy Sets Syst. 371, 110–122 (2019)

    MATH  Google Scholar 

  36. Qi, W., Zong, G., Zheng, W.X.: Adaptive event-triggered SMC for stochastic switching systems with semi-Markov process and application to boost converter circuit model. IEEE Trans. Circuits Syst. I Regul. Pap. 68(2), 786–796 (2021)

    MathSciNet  MATH  Google Scholar 

  37. Ren, H., Cheng, Z., Qin, J., Renquan, L.: Deception attacks on event-triggered distributed consensus estimation for nonlinear systems. Automatica 154, 111100 (2023)

    MathSciNet  MATH  Google Scholar 

  38. Sathishkumar, M., Sakthivel, R., Alzahrani, F., Kaviarasan, B., Ren, Y.: Mixed \(H_\infty \) and passivity-based resilient controller for nonhomogeneous Markov jump systems. Nonlinear Anal. Hybrid Syst. 31, 86–99 (2019)

    MathSciNet  MATH  Google Scholar 

  39. Shen, H., Jiao, S., Huo, S., Chen, M., Li, J., Chen, B.: On energy-to-peak filtering for semi-Markov jump singular systems with unideal measurements. Signal Process. 144, 127–133 (2018)

    MATH  Google Scholar 

  40. Shen, Y., Wu, Z.G., Shi, P., Shu, Z., Karimi, H.R.: \(H_\infty \) control of Markov jump time-delay systems under asynchronous controller and quantizer. Automatica 99, 352–360 (2019)

    MathSciNet  MATH  Google Scholar 

  41. Shi, P., Xiaojie, S., Li, F.: Dissipativity-based filtering for fuzzy switched systems with stochastic perturbation. IEEE Trans. Autom. Control 61(6), 1694–1699 (2016)

    MathSciNet  MATH  Google Scholar 

  42. Song, J., Chang, X.-H.: Finite-time peak-to-peak filtering for nonlinear singular system. In: IEEE Transactions on Circuits and Systems II: Express Briefs, pp. 1–1 (2022)

  43. Song, W., Tong, S.: Fuzzy decentralized output feedback event-triggered control for interval type-2 fuzzy systems with saturated inputs. Inf. Sci. 575, 639–653 (2021)

    MathSciNet  MATH  Google Scholar 

  44. Song, X., Men, Y., Zhou, J., Zhao, J., Shen, H.: Event-triggered \(H_\infty \) control for networked discrete-time Markov jump systems with repeated scalar nonlinearities. Appl. Math. Comput. 298, 123–132 (2017)

    MathSciNet  MATH  Google Scholar 

  45. Tian, Y., Wang, Z.: Asynchronous extended dissipative filtering for T-S fuzzy Markov jump systems. IEEE Trans. Syst. Man Cybern. 52(6), 3915–3925 (2022)

    MATH  Google Scholar 

  46. Tian, Y., Wang, Z.: Finite-time extended dissipative filtering for singular T-S fuzzy systems with nonhomogeneous Markov jumps. IEEE Trans. Cybern. 52(6), 4574–4584 (2022)

    MATH  Google Scholar 

  47. Tian, E., Wang, Z., Zou, L., Yue, D.: Probabilistic-constrained filtering for a class of nonlinear systems with improved static event-triggered communication. Int. J. Robust Nonlinear Control 29(5), 1484–1498 (2019)

    MathSciNet  MATH  Google Scholar 

  48. Wang, H., Xue, A.: Adaptive event-triggered H\(_\infty \) filtering for discrete-time delayed neural networks with randomly occurring missing measurements. Signal Process. 153, 221–230 (2018)

    MATH  Google Scholar 

  49. Wang, X.-L., Yang, G.-H.: Event-triggered fault detection for discrete-time T-S fuzzy systems. ISA Trans. 76, 18–30 (2018)

    MATH  Google Scholar 

  50. Wang, S., Feng, J., Zhang, H.: Robust fault tolerant control for a class of networked control systems with state delay and stochastic actuator failures. Int. J. Adapt. Control Signal Process. 28(9), 798–811 (2014)

    MATH  Google Scholar 

  51. Wang, L., Xu, J., Liu, Y., Chen, C.L.P.: Dynamic event-driven finite-horizon optimal consensus control for constrained multiagent systems. In: IEEE Transactions on Neural Networks and Learning Systems, pp. 1–14 (2023)

  52. Wu, B., Zhao, Y.: Dissipative control for fuzzy singular Markov jump systems with state-dependent noise and asynchronous modes. IEEE Access 9, 25691–25702 (2021)

    MATH  Google Scholar 

  53. Xia, W., Zheng, W.X., Shengyuan, X.: Event-triggered filter design for markovian jump delay systems with nonlinear perturbation using quantized measurement. Int. J. Robust Nonlinear Control 29(14), 4644–4664 (2019)

    MathSciNet  MATH  Google Scholar 

  54. Xiao, S., Ge, X., Han, Q.L., Cao, Z., Zhang, Y., Wang, H.: Resilient distributed event-triggered control of vehicle platooning under dos attacks. IFAC-PapersOnLine 53(2), 1807–1812 (2020). (21st IFAC World Congress)

    MATH  Google Scholar 

  55. Xiao, S., Ge, X., Han, Q.-L., Zhang, Y.: Secure distributed adaptive platooning control of automated vehicles over vehicular ad-hoc networks under denial-of-service attacks. IEEE Trans. Cybern. 52(11), 12003–12015 (2022)

    MATH  Google Scholar 

  56. Yabin Gao, F., Xiao, J.L., Wang, R.: Distributed soft fault detection for interval type-2 fuzzy-model-based stochastic systems with wireless sensor networks. IEEE Trans. Industr. Inf. 15(1), 334–347 (2019)

    MATH  Google Scholar 

  57. Yuyan, W., Cheng, J., Zheng-Guang, W.: Fuzzy-affine-model-based filtering design with memory-based dynamic event-triggered protocol. IEEE Trans. Fuzzy Syst. 31(4), 1340–1351 (2023)

    MATH  Google Scholar 

  58. Zhang, J., Peng, C.: Event-triggered \(H_\infty \) filtering for networked Takagi? Sugeno fuzzy systems with asynchronous constraints. IET Signal Proc. 9(5), 403–411 (2015)

    MATH  Google Scholar 

  59. Zhang, L., Zhu, Y., Zheng, W.X.: Energy-to-peak state estimation for Markov jump RNNS with time-varying delays via nonsynchronous filter with nonstationary mode transitions. IEEE Trans. Neural Netw. Learn. Syst. 26(10), 2346–2356 (2015)

    MathSciNet  MATH  Google Scholar 

  60. Zhang, J., Christofides, P.D., He, X., Zhe, W., Zhang, Z., Zhou, D.: Event-triggered filtering and intermittent fault detection for time-varying systems with stochastic parameter uncertainty and sensor saturation. Int. J. Robust Nonlinear Control 28(16), 4666–4680 (2018)

    MathSciNet  MATH  Google Scholar 

  61. Zhang, M., Shi, P., Liu, Z., Ma, L., Hongye, S.: H\(_\infty \) filtering for discrete-time switched fuzzy systems with randomly occurring time-varying delay and packet dropouts. Signal Process. 143, 320–327 (2018)

    MATH  Google Scholar 

  62. Zhang, Z., Liang, H., Chengwei, W., Ahn, C.K.: Adaptive event-triggered output feedback fuzzy control for nonlinear networked systems with packet dropouts and actuator failure. IEEE Trans. Fuzzy Syst. 27(9), 1793–1806 (2019)

    MATH  Google Scholar 

  63. Zhang, Y., Shi, P., Agarwal, R.K., Shi, Y.: Event-based dissipative analysis for discrete time-delay singular jump neural networks. IEEE Trans. Neural Netw. Learn. Syst. 31(4), 1232–1241 (2020)

    MathSciNet  MATH  Google Scholar 

  64. Zhang, Y., Shi, P., Agarwal, R.K., Shi, Y.: Event-based mixed H\(_\infty \) and passive filtering for discrete singular stochastic systems. Int. J. Control 93(10), 2407–2415 (2020)

    MathSciNet  MATH  Google Scholar 

  65. Zhang, Q., Yan, H., Wang, M., Li, Z., Chang, Y.: Asynchronous fault detection filter design for TS fuzzy singular systems via dynamic event-triggered scheme. IEEE Trans. Fuzzy Syst. 31(3), 970–981 (2023)

    MATH  Google Scholar 

  66. Zhao, T., Wei, Z., Dian, S., Xiao, J.: Observer-based \(H_\infty \) controller design for interval type-2 T-S fuzzy systems. Neurocomputing 177, 9–25 (2016)

    MATH  Google Scholar 

  67. Zhou, G., Yue, D., Liu, J., Ding, Z.: \( H_\infty \) tracking control of nonlinear networked systems with a novel adaptive event-triggered communication scheme. J. Franklin Inst. 354(8), 3540–3553 (2017)

    MathSciNet  MATH  Google Scholar 

  68. Zhu, Y., Zhang, L., Basin, M.V.: Nonstationary \(H_\infty \) dynamic output feedback control for discrete-time markov jump linear systems with actuator and sensor saturations. Int. J. Robust Nonlinear Control 26(5), 1010–1025 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

This research has been funded by the Scientific Research Deanship at University of Haöil - Saudi Arabia through project number RG-23005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mourad Kchaou.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kchaou, M., Alshammari, O., Jerbi, H. et al. An Adaptive Event-Triggered Filtering for Fuzzy Markov Switching Systems with Quantization and Deception Attacks: A Non-stationary Approach. Int. J. Fuzzy Syst. 26, 1879–1896 (2024). https://doi.org/10.1007/s40815-024-01711-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-024-01711-5

Keywords