Skip to main content

Advertisement

Log in

Artificial Intelligence-Based Expert Prioritizing and Hybrid Quantum Picture Fuzzy Rough Sets for Investment Decisions of Virtual Energy Market in the Metaverse

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Improvements are necessary for the performance improvements of the digital twin technology developed for the virtual energy market on the Metaverse platform. However, more important factors need to be improved first to avoid excessive increases in costs. Thus, a priority analysis needs to be carried out to determine the variables that most affect the performance of technology investments. Accordingly, the purpose of this study is to evaluate the investments of digital twin technologies for virtual energy market in the Metaverse. A novel artificial intelligence-based fuzzy decision-making model is constructed to reach this objective. Firstly, the expert choices are prioritized with artificial intelligence-based decision-making method. Secondly, the investment priorities are analyzed for digital twin technologies with quantum picture fuzzy rough sets (QPFRS)-based Multi Stepwise Weight Assessment Ratio Analysis (M-SWARA). Finally, the alternatives for virtual energy market in the metaverse are ranked by VIKOR (VIsekriterijumska optimizacija i KOmpromisno Resenje). There are limited studies in the literature that computes the weights of the experts while generating a decision-making model. Therefore, the main contribution of this study is integrating the artificial intelligence approach and fuzzy multi-criteria decision-making methodology. Within this scope, an artificial intelligence-based application is performed when creating the decision matrix. Owing to this issue, the importance weights of experts are determined according to the qualifications of these people. This situation contributes to the results obtained being more realistic. The findings demonstrate that operational performance is the most important indicator for the improvements of the digital twin technology investments for virtual energy markets in metaverse platform because it has the greatest weight (0.267). Furthermore, integrated data production is another critical factor for the performance increase of these projects with the weight of 0.257. It is also concluded that optimization of energy consumption with smart grids has the best ranking performance among the alternatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

The data utilized in this manuscript are hypothetical and artificial, and one can use these data before prior permission by just citing this manuscript.

References

  1. Khajooei, A., Jamshidi, M., Shokouhi, S.B.: A super-efficient TinyML processor for the edge metaverse. Information 14(4), 235 (2023)

    Google Scholar 

  2. Lin, L., Chen, Y., Zhou, Z., Li, P., Xiong, J.: When metaverse meets computing power networking: an energy-efficient framework for service placement. IEEE Wirel. Commun. 30(5), 76–85 (2023)

    MATH  Google Scholar 

  3. Deng, Y., Weng, Z., Zhang, T.: Metaverse-driven remote management solution for scene-based energy storage power stations. Evol. Intel. 16(5), 1521–1532 (2023)

    MATH  Google Scholar 

  4. Zhao, N., Zhang, H., Yang, X., Yan, J., You, F.: Emerging information and communication technologies for smart energy systems and renewable transition. Adv. Appl. Energy 100125 (2023)

  5. Vlăduţescu, Ş, Stănescu, G.C.: Environmental sustainability of metaverse: perspectives from Romanian developers. Sustainability 15(15), 11704 (2023)

    Google Scholar 

  6. Wang, R., Wang, J., Hao, Y., Hu, L., Alqahtani, S.A., Chen, M.: C3Meta: a context-aware cloud-edge-end collaboration framework toward green metaverse. IEEE Wirel. Commun. 30(5), 144–150 (2023)

    Google Scholar 

  7. Duong, T.Q., Van Huynh, D., Khosravirad, S.R., Sharma, V., Dobre, O.A., Shin, H.: From digital twin to metaverse: the role of 6G ultra-reliable and low-latency communications with multi-tier computing. IEEE Wirel. Commun. 30(3), 140–146 (2023)

    Google Scholar 

  8. Jamshidi, M.B., Sargolzaei, S., Foorginezhad, S., Moztarzadeh, O.: Metaverse and microorganism digital twins: a deep transfer learning approach. Appl. Soft Comput. 147, 110798 (2023)

    Google Scholar 

  9. Li, S., Lin, X., Wu, J., Zhang, W., Li, J.: Digital twin and artificial intelligence-empowered panoramic video streaming: reducing transmission latency in the extended reality-assisted vehicular metaverse. IEEE Veh. Technol. Mag. (2023)

  10. Ha, M., Lee, J., Cho, Y., Lee, M., Baek, H., Lee, J., et al.: A hybrid upper‐arm‐geared exoskeleton with anatomical digital twin for tangible metaverse feedback and communication. Adv. Mater. Technol., 2301404.

  11. Ecer, F., Murat, T., Dinçer, H., Yüksel, S.: A fuzzy BWM and MARCOS integrated framework with Heronian function for evaluating cryptocurrency exchanges: a case study of Türkiye. Financ. Innov. 10(1), 31 (2024)

    MATH  Google Scholar 

  12. Mikhaylov, A., Bhatti, I.M., Dinçer, H., Yüksel, S.: Integrated decision recommendation system using iteration-enhanced collaborative filtering, golden cut bipolar for analyzing the risk-based oil market spillovers. Comput. Econ. 63(1), 305–338 (2024)

    MATH  Google Scholar 

  13. Eti, S., Dinçer, H., Meral, H., Yüksel, S., Gökalp, Y.: Insurtech in Europe: identifying the top investment priorities for driving innovation. Financ. Innov. 10(1), 38 (2024)

    MATH  Google Scholar 

  14. Kou, G., Pamucar, D., Dinçer, H., Deveci, M., Yüksel, S., Umar, M.: Perception and expression-based dual expert decision-making approach to information sciences with integrated quantum fuzzy modelling for renewable energy project selection. Inf. Sci. 658, 120073 (2024)

    MATH  Google Scholar 

  15. Keršuliene, V., Zavadskas, E.K., Turskis, Z.: Selection of rational dispute resolution method by applying new step-wise weight assessment ratio analysis (SWARA). J. Bus. Econ. Manag. 11(2), 243–258 (2010)

    MATH  Google Scholar 

  16. Moslem, S., Stević, Ž, Tanackov, I., Pilla, F.: Sustainable development solutions of public transportation: an integrated IMF SWARA and Fuzzy Bonferroni operator. Sustain. Cities Soc. 93, 104530 (2023)

    Google Scholar 

  17. Vrtagić, S., Softić, E., Subotić, M., Stević, Ž, Dordevic, M., Ponjavic, M.: Ranking road sections based on MCDM model: new improved fuzzy SWARA (IMF SWARA). Axioms 10(2), 92 (2021)

    Google Scholar 

  18. Talal, M., Alamoodi, A.H., Albahri, O.S., Albahri, A.S., Pamucar, D.: Evaluation of remote sensing techniques-based water quality monitoring for sustainable hydrological applications: an integrated FWZIC-VIKOR modelling approach. Environ. Dev. Sustain., 1–45 (2023)

  19. Ecer, F., Ögel, İ.Y., Krishankumar, R., Tirkolaee, E.B.: The q-rung fuzzy LOPCOW-VIKOR model to assess the role of unmanned aerial vehicles for precision agriculture realization in the Agri-Food 4.0 era. Artif. Intell. Rev., 1–34 (2023)

  20. Gao, F., Zhang, Y., Li, Y., Bi, W.: An integrated hesitant 2-tuple linguistic Pythagorean fuzzy decision-making method for single-pilot operations mechanism evaluation. Eng. Appl. Artif. Intell. 130, 107771 (2024)

    Google Scholar 

  21. Wang, X., Jia, H., Wang, Z., Jin, X., Deng, Y., Mu, Y., Yu, X.: A real time peer-to-peer energy trading for prosumers utilizing time-varying building virtual energy storage. Int. J. Electr. Power Energy Syst. 155, 109547 (2024)

    Google Scholar 

  22. Manigandan, P., Alam, M.S., Alagirisamy, K., Pachiyappan, D., Murshed, M., Mahmood, H.: Realizing the sustainable development goals through technological innovation: juxtaposing the economic and environmental effects of financial development and energy use. Environ. Sci. Pollut. Res. 30(3), 8239–8256 (2023)

    Google Scholar 

  23. Radicic, D., Petković, S.: Impact of digitalization on technological innovations in small and medium-sized enterprises (SMEs). Technol. Forecast. Soc. Chang. 191, 122474 (2023)

    MATH  Google Scholar 

  24. Fukawa, N., Rindfleisch, A.: Enhancing innovation via the digital twin. J. Prod. Innov. Manag. (2023)

  25. Tang, H., Wu, Y., Cai, Y., Wang, F., Lin, Z., Pei, Y.: Design of power lithium battery management system based on digital twin. J. Energy Storage 47, 103679 (2022)

    Google Scholar 

  26. Yan, J., Zhou, J., Li, Y., Cao, X., Sun, Y., Liu, B.: Research on intelligent pumped storage power station based on digital twins technology. J. Phys. Conf. Ser. 2237(1), 012022 (2022)

    Google Scholar 

  27. He, L., Li, T., He, B.: Intelligent manufacturing production line simulation of super capacitor. J. Robot. Control (JRC) 2(3), 175–179 (2021)

    MATH  Google Scholar 

  28. Yang, Y. et al.: Supercapacitor digital twin management system based on cloud environment. In: 2021 IEEE 23rd International Conference on High Performance Computing & Communications; 7th International Conference on Data Science & Systems; 19th International Conference on Smart City; 7th International Conference on Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys), pp. 1014–1021 (2021)

  29. Broo, D.G., Schooling, J.: Digital twins in infrastructure: definitions, current practices, challenges and strategies. Int. J. Constr. Manag. 23(7), 1254–1263 (2023)

    MATH  Google Scholar 

  30. Sifat, M.M.H., Choudhury, S.M., Das, S.K., Ahamed, M.H., Muyeen, S.M., Hasan, M.M., et al.: Towards electric digital twin grid: technology and framework review. Energy and AI 11, 100213 (2023)

    Google Scholar 

  31. Weerapura, V., Sugathadasa, R., De Silva, M.M., Nielsen, I., Thibbotuwawa, A.: Feasibility of digital twins to manage the operational risks in the production of a ready-mix concrete plant. Buildings 13(2), 447 (2023)

    Google Scholar 

  32. Nucci, F., Puccioni, C., Ricchi, O.: Digital technologies and productivity: a firm-level investigation. Econ. Model. 128, 106524 (2023)

    Google Scholar 

  33. Maheshwari, P., Kamble, S., Belhadi, A., Mani, V., Pundir, A.: Digital twin implementation for performance improvement in process industries-a case study of food processing company. Int. J. Prod. Res. 61(23), 8343–8365 (2023)

    MATH  Google Scholar 

  34. Wong, J., Hoong, P., Teo, E., Lin, A.: Digital twin: a conceptualization of the task-technology fit for individual users in the building maintenance sector. IOP Conf. Ser.: Earth Environ. Sci. 1101(9), 092041 (2022)

    Google Scholar 

  35. Sifat, M.M.H., Das, S.K., Choudhury, S.M.: Design, development, and optimization of a conceptual framework of digital twin electric grid using systems engineering approach. Electric Power Syst. Res. 226, 109958 (2024)

    MATH  Google Scholar 

  36. Jia, D., Li, X., Gong, X., Lv, X., Shen, Z.: Bi-level strategic bidding model of novel virtual power plant aggregating waste gasification in integrated electricity and hydrogen markets. Appl. Energy 357, 122468 (2024)

    MATH  Google Scholar 

  37. Badakhshan, E., Ball, P.: Applying digital twins for inventory and cash management in supply chains under physical and financial disruptions. Int. J. Prod. Res. 61(15), 5094–5116 (2023)

    MATH  Google Scholar 

  38. Lai, W., Zhang, H., Jiang, D., Wang, Y., Wang, R., Zhu, J. et al.: Digital twin and big data technologies benefit oilfield management. Day 3 Wed, November 02, 2022 (2022)

  39. Eppinger, T., Longwell, G., Mas, P., Goodheart, K., Badiali, U., Aglave, R.: Increase food production efficiency using the executable Digital Twin (xDT). Chem. Eng. Trans. 87, 37–42 (2021)

    Google Scholar 

  40. Lampropoulos, G., Siakas, K.: Enhancing and securing cyber-physical systems and Industry 4.0 through digital twins: a critical review. J. Softw.: Evolut. Process 35(7), e2494 (2023)

    MATH  Google Scholar 

  41. Gkontzis, A.F., Kontsiantis, S., Feretzakis, G., Verykios, V.S.: Enhancing urban resilience: smart city data analyses, forecasts, and digital twin techniques at the neighborhood level. Future Internet 16(2), 47 (2024)

    Google Scholar 

  42. Epiphaniou, G., Hammoudeh, M., Yuan, H., Maple, C., Ani, U.: Digital twins in cyber effects modelling of IoT/CPS points of low resilience. Simul. Model. Pract. Theory 125, 102744 (2023)

    Google Scholar 

  43. Cheng, X., Mou, J., Shen, X.L., de Vreede, T., Alt, R.: Guest editorial: exploring the research opportunities and challenges in the metaverse. Internet Res. 34(1), 1–8 (2024)

    Google Scholar 

  44. Feng, H., Chen, D., Lv, H., Lv, Z.: Game theory in network security for digital twins in industry. Digit. Commun. Netw. (2023)

  45. Sasikumar, A., Vairavasundaram, S., Kotecha, K., Indragandhi, V., Ravi, L., Selvachandran, G., Abraham, A.: Blockchain-based trust mechanism for digital twin empowered Industrial Internet of Things. Futur. Gener. Comput. Syst. 141, 16–27 (2023)

    Google Scholar 

  46. Hadi, R., Melumad, S., Park, E.S.: The metaverse: a new digital frontier for consumer behavior. J. Consum. Psychol. 34(1), 142–166 (2024)

    Google Scholar 

  47. Zhao, L., Yang, Q., Huang, H., Guo, L., Jiang, S.: Intelligent wireless sensing driven metaverse: a survey. Comput. Commun. 214, 46–56 (2024)

    MATH  Google Scholar 

  48. Bahri, R.S., Sudirman, I.D., Utama, I.D., Susanto, R.H.: Data Mining Techniques To Uncovering Customer Segments: K-Means Clustering Using The Elbow Method Approach In Medium-Scale Grocery. In: 2023 International Conference on Computer Science, Information Technology and Engineering (ICCoSITE), pp. 262–266. IEEE (2023, February).

  49. Ursul, I., Pereymybida, A.: Unsupervised detection of anomalous running patterns using cluster analysis. In: 2023 IEEE 13th International Conference on Electronics and Information Technologies (ELIT), pp. 148–152. IEEE (2023, September)

  50. Kayacık, M., Dinçer, H., Yüksel, S.: Using quantum spherical fuzzy decision support system as a novel sustainability index approach for analyzing industries listed in the stock exchange. Borsa Istanbul Rev. 22(6), 1145–1157 (2022)

    MATH  Google Scholar 

  51. Yüksel, S., Dinçer, H.: Sustainability analysis of digital transformation and circular industrialization with quantum spherical fuzzy modeling and golden cuts. Appl. Soft Comput. 138, 110192 (2023)

    MATH  Google Scholar 

  52. Luo, M., Li, W.: Some new similarity measures on picture fuzzy sets and their applications. Soft. Comput. 27(10), 6049–6067 (2023)

    MATH  Google Scholar 

  53. Dinçer, H., Yüksel, S., Mikhaylov, A., Pinter, G., Shaikh, Z.A.: Analysis of renewable-friendly smart grid technologies for the distributed energy investment projects using a hybrid picture fuzzy rough decision-making approach. Energy Rep. 8, 11466–11477 (2022)

    Google Scholar 

  54. Sun, Y., Giles, C.L.: Popularity weighted ranking for academic digital libraries. In: Advances in Information Retrieval: 29th European Conference on IR Research, ECIR 2007, Rome, Italy, April 2–5, 2007. Proceedings 29, pp. 605–612. Springer, Berlin (2007)

  55. Almulla, M., Yahyaoui, H., Al-Matori, K.: A new fuzzy hybrid technique for ranking real world Web services. Knowl.-Based Syst. 77, 1–15 (2015)

    MATH  Google Scholar 

  56. Ouadah, A., Hadjali, A., Nader, F., Benouaret, K.: SEFAP: an efficient approach for ranking skyline web services. J. Ambient. Intell. Humaniz. Comput. 10, 709–725 (2019)

    Google Scholar 

  57. Radlinski, F., Craswell, N.: Comparing the sensitivity of information retrieval metrics. In: Proceedings of the 33rd International ACM SIGIR Conference on RESEARCH and Development in Information Retrieval (pp. 667–674) (2010, July)

  58. Mikhaylov, A., Dinçer, H., Yüksel, S., Pinter, G., Shaikh, Z.A.: Bitcoin mempool growth and trading volumes: Integrated approach based on QROF Multi-SWARA and aggregation operators. J. Innov. Knowl. 8(3), 100378 (2023)

    Google Scholar 

  59. Dhumras, H., Shukla, P.K., Bajaj, R.K., Jain, D.K., Shukla, V., Shukla, P.K.: On federated learning-oriented q-rung picture fuzzy TOPSIS/VIKOR decision-making approach in electronic marketing strategic plans. IEEE Trans. Consum. Electron. (2023)

  60. Bhandal, R., Meriton, R., Kavanagh, R.E., Brown, A.: The application of digital twin technology in operations and supply chain management: a bibliometric review. Supply Chain Manag.: Int. J. 27(2), 182–206 (2022)

    MATH  Google Scholar 

  61. Zhao, G., Cui, Z., Xu, J., Liu, W., Ma, S.: Hybrid modeling-based digital twin for performance optimization with flexible operation in the direct air-cooling power unit. Energy 254, 124492 (2022)

    MATH  Google Scholar 

  62. Caccamo, C., Pedrazzoli, P., Eleftheriadis, R., Magnanini, M.C.: Using the process digital twin as a tool for companies to evaluate the return on investment of manufacturing automation. Procedia CIRP 107, 724–728 (2022)

    Google Scholar 

  63. Alcaraz, C., Lopez, J.: Digital twin: a comprehensive survey of security threats. IEEE Commun. Surv. Tutor. 24(3), 1475–1503 (2022)

    MATH  Google Scholar 

  64. Eneyew, D.D., Capretz, M.A., Bitsuamlak, G.T.: Toward smart-building digital twins: BIM and IoT data integration. IEEE Access 10, 130487–130506 (2022)

    Google Scholar 

  65. Liu, C., Le Roux, L., Körner, C., Tabaste, O., Lacan, F., Bigot, S.: Digital twin-enabled collaborative data management for metal additive manufacturing systems. J. Manuf. Syst. 62, 857–874 (2022)

    Google Scholar 

  66. Yu, W., Patros, P., Young, B., Klinac, E., Walmsley, T.G.: Energy digital twin technology for industrial energy management: classification, challenges and future. Renew. Sustain. Energy Rev. 161, 112407 (2022)

    Google Scholar 

  67. Lamnatou, C., Chemisana, D., Cristofari, C.: Smart grids and smart technologies in relation to photovoltaics, storage systems, buildings and the environment. Renew. Energy 185, 1376–1391 (2022)

    Google Scholar 

  68. Goudarzi, A., Ghayoor, F., Waseem, M., Fahad, S., Traore, I.: A survey on IoT-enabled smart grids: emerging, applications, challenges, and outlook. Energies 15(19), 6984 (2022)

    MATH  Google Scholar 

  69. Guo, Y., Wan, Z., Cheng, X.: When blockchain meets smart grids: a comprehensive survey. High-Confid. Comput. 2(2), 100059 (2022)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peide Liu or Hasan Dinçer.

Ethics declarations

Conflicts of interest

About the publication of this manuscript the authors declare that they have no conflict of interest.

Ethical Approval

The authors state that this is their original work, and it is neither submitted nor under consideration in any other journal simultaneously.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, P., Yüksel, S., Dinçer, H. et al. Artificial Intelligence-Based Expert Prioritizing and Hybrid Quantum Picture Fuzzy Rough Sets for Investment Decisions of Virtual Energy Market in the Metaverse. Int. J. Fuzzy Syst. 26, 2109–2131 (2024). https://doi.org/10.1007/s40815-024-01716-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-024-01716-0

Keywords