Skip to main content

Advertisement

Log in

A Positive Sample Enhancement Algorithm with Fuzzy Nearest Neighbor Hybridization for Imbalance Data

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

The class imbalance problem is one of the critical research areas of machine learning and deep learning and has received widespread attention from researchers. To solve the class imbalance problem, current typical methods only use positive samples to generate synthetic samples that are similar to the minority class while ignoring the characteristic information of negative samples. Therefore, when the number of positive samples is too small and has highly similar features, it will cause the classifier to have fitting problems. In response to the above problems, we propose a new positive sample enhancement algorithm (PENH) to solve the class imbalance by simulating the process of chromosome cross-fusion. We select the fuzzy negative sample set around the positive sample by the K-nearest neighbor algorithm and adopt the beyond empirical risk minimization (Mixup) to randomly hybridize the positive sample with the negative sample of the set. To overcome the problem of sample imbalance, we adopt the One-class SVM with overfitting of positive samples to select the newly generated unlabeled samples to obtain the balanced dataset. We construct multiple experiments in 20 open datasets. The results show that our PENH outperforms the other six baseline methods in multiple evaluation indicator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The data that support the findings of this study are available on request from public dataset websites (https://sci2s.ugr.es/keel/datasets.php).

References

  1. Yun, J., Lee, J.S.: Learning from class-imbalanced data using misclassification-focusing generative adversarial networks. Expert Syst. Appl. 240, 122288 (2024)

    Article  Google Scholar 

  2. Mishra, R., Chavda, P., Kumar, R., Pandit, R., Joshi, M., Kumar, M., Joshi, C.: Exploring genetic landscape of low-density polyethylene degradation for sustainable troubleshooting of plastic pollution at landfills. Sci. Total. Environ. 912, 168882 (2024)

    Article  MATH  Google Scholar 

  3. Saulino, M.: Maintenance and troubleshooting of intrathecal therapy for spasticity. In: Neuraxial Therapeutics: A Comprehensive Guide, pp. 721–728. Springer, Cham (2023)

  4. Rajanbabu, K., Gunasekaran, S.: H G Selvarajan Efficacy of Audio-Video Material on Cochlear Implant in Tamil (AVMCI-T) about care, maintenance and troubleshooting. Int. J. Pediatr. Otorhinolaryngol. 176, 111768 (2024)

    Article  MATH  Google Scholar 

  5. Manocchio, L.D., Layeghy, S., Lo, W.W., Kulatilleke, G.K., Sarhan, M., Portmann, M.: Flowtransformer: a transformer framework for flow-based network intrusion detection systems. Expert Syst. Appl. 241, 122564 (2024)

    Article  Google Scholar 

  6. Alazab, M., Khurma, R.A., Castillo, P.A., Abu-Salih, B., Martín, A., Camacho, D.: An effective networks intrusion detection approach based on hybrid Harris Hawks and multi-layer perceptron. Egypt. Inform. J. 25, 100423 (2024)

    Article  Google Scholar 

  7. Wu, H.: Feature-weighted Naive Bayesian classifier for wireless network intrusion detection. Secur. Commun. Netw. 2024, 7065482 (2024)

    Article  Google Scholar 

  8. Padurariu, C., Breaban, M.E.: Dealing with data imbalance in text classification. Procedia Comput. Sci. 159, 736–745 (2019)

    Article  MATH  Google Scholar 

  9. Korde, V., Mahender, C.N.: Text classification and classifiers: a survey. Int. J. Artif. Intell. Appl. 3(2), 85 (2012)

    MATH  Google Scholar 

  10. Khurana, A., Verma, O.P.: Optimal feature selection for imbalanced text classification. IEEE Trans. Artif. Intell. 4(1), 135–147 (2022)

    Article  MATH  Google Scholar 

  11. Benchaji, I., Douzi, S., El Ouahidi, B.: Using genetic algorithm to improve classification of imbalanced datasets for credit card fraud detection. In: Smart Data and Computational Intelligence: Proceedings of the International Conference on Advanced Information Technology, Services and Systems, 2019, pp. 220–229 (2019)

  12. Makki, S., Assaghir, Z., Taher, Y., Haque, R., Hacid, M.-S., Zeineddine, H.: An experimental study with imbalanced classification approaches for credit card fraud detection. IEEE Access 7, 93010–93022 (2019)

    Article  Google Scholar 

  13. Singh, A., Ranjan, R.K., Tiwari, A.: Credit card fraud detection under extreme imbalanced data: a comparative study of data-level algorithms. J. Exp. Theor. Artif. Intell. 34(4), 571–598 (2022)

    Article  MATH  Google Scholar 

  14. Alarab, I., Prakoonwit, S.: Effect of data resampling on feature importance in imbalanced blockchain data: comparison studies of resampling techniques. Data Sci. Manag. 5(2), 66–76 (2022)

    Article  Google Scholar 

  15. Bunkhumpornpat, C., Sinapiromsaran, K., Lursinsap, C.: DBSMOTE: density-based synthetic minority over-sampling technique. Appl. Intell. 36, 664–684 (2012)

    Article  Google Scholar 

  16. Batista, G.E., Prati, R.C., Monard, M.C.: A study of the behavior of several methods for balancing machine learning training data. ACM SIGKDD Explor. Newsl. 6(1), 20–29 (2004)

    Article  MATH  Google Scholar 

  17. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  MATH  Google Scholar 

  18. Wilson, D.L.: Asymptotic properties of nearest neighbor rules using edited data. IEEE Trans. Syst. Man Cybern. SMC-2(3), 408–421 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  19. López, V., Triguero, I., Carmona, C.J., García, S., Herrera, F.: Addressing imbalanced classification with instance generation techniques: IPADE-ID. Neurocomputing 126, 15–28 (2014)

    Article  MATH  Google Scholar 

  20. Wang, J., Neskovic, P., Cooper, L.N.: Improving nearest neighbor rule with a simple adaptive distance measure. Pattern Recognit. Lett. 28(2), 207–213 (2007)

    Article  MATH  Google Scholar 

  21. Mehwish, N., Asit-Kuma, D., Janmenjoy, N., Danilo, P.: Rough-fuzzy based synthetic data generation exploring boundary region of rough sets to handle class imbalance problem. Axioms 12(4), 345 (2023)

    Article  Google Scholar 

  22. Wentao, L., Tao, Z.: Multi-granularity probabilistic rough fuzzy sets for interval-valued fuzzy decision systems. Int. J. Fuzzy Syst. 25, 1–13 (2023)

    MATH  Google Scholar 

  23. Wentao, L., Shichao, Z., Weihua, X.: Feature selection approach based on improved fuzzy c-means with principle of refined justifiable granularity. IEEE Trans. Fuzzy Syst. 31(7), 2112–2126 (2022)

    MATH  Google Scholar 

  24. Wentao, L., Yuli, W., Weihua, X.: General expression of knowledge granularity based on a fuzzy relation matrix. Fuzzy Sets Syst. 440, 149–163 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wentao, L., Witold, P., Xiaoping, X.: Fuzziness and incremental information of disjoint regions in double-quantitative decision-theoretic rough set model. Int. J. Mach. Learn. Cybern. 10, 2669–2690 (2019)

    Article  MATH  Google Scholar 

  26. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: Mixup: beyond empirical risk minimization (2017). arXiv preprint: 09412

  27. Dai, Q., Liu, J.-W., Yang, J.-P.: Class-imbalanced positive instances augmentation via three-line hybrid. Knowl. Based Syst. 257, 109902 (2022)

    Article  MATH  Google Scholar 

  28. Wentao, L., Witold, P., Weihua, X.: Interval dominance-based feature selection for interval-valued ordered data. IEEE Trans. Neural Netw. Learn. Syst. 34(10), 6898–6912 (2022)

    MathSciNet  MATH  Google Scholar 

  29. Peterson, L.E.: K-nearest neighbor. Scholarpedia 4(2), 1883 (2009)

    Article  MATH  Google Scholar 

  30. Manevitz, L.M., Yousef, M.: One-class SVMs for document classification. J. Mach. Learn. Res. 2(Dec), 139–154 (2001)

    MATH  Google Scholar 

  31. Zhang, M.-L., Li, Y.-K., Yang, H., Liu, X.-Y.: Towards class-imbalance aware multi-label learning. IEEE Trans. Cybern. 52(6), 4459–4471 (2020)

    Article  MATH  Google Scholar 

  32. Tahir, M.A., Kittler, J., Yan, F.: Inverse random under sampling for class imbalance problem and its application to multi-label classification. Pattern Recognit. 45(10), 3738–3750 (2012)

    Article  MATH  Google Scholar 

  33. Zhang, Y., Kang, B., Hooi, B., Yan, S., Feng, J.: Deep long-tailed learning: a survey. IEEE Trans. Pattern Anal. Mach. Intell. (2023). https://doi.org/10.48550/arXiv.2110.04596

    Article  MATH  Google Scholar 

  34. Liu, Z., Miao, Z., Zhan, X., Wang, J., Gong, B., Yu, S.X.: Large-scale long-tailed recognition in an open world. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 2537–2546 (2019)

  35. Santos, M.S., Abreu, P.H., Japkowicz, N., Fernández, A., Soares, C., Wilk, S., Santos, J.: On the joint-effect of class imbalance and overlap: a critical review. Artif. Intell. Rev. 55(8), 6207–6275 (2022)

    Article  MATH  Google Scholar 

  36. Denil, M., Trappenberg, T.: Overlap versus imbalance. In: Advances in Artificial Intelligence, 2010, pp. 220–231 (2010)

  37. Carvalho, D.R., Freitas, A.A.: A genetic-algorithm for discovering small-disjunct rules in data mining. Appl. Soft Comput. 2(2), 75–88 (2002)

    Article  MATH  Google Scholar 

  38. Nekooeimehr, I., Lai-Yuen, S.K.: Adaptive semi-unsupervised weighted oversampling (A-SUWO) for imbalanced datasets. Expert Syst. Appl. 46, 405–416 (2016)

    Article  Google Scholar 

  39. Douzas, G., Bacao, F.: Self-Organizing Map Oversampling (SOMO) for imbalanced data set learning. Expert Syst. Appl. 82, 40–52 (2017)

    Article  MATH  Google Scholar 

  40. Ramentol, E., Caballero, Y., Bello, R., Herrera, F.: SMOTE-RSB*: a hybrid preprocessing approach based on oversampling and undersampling for high imbalanced data-sets using SMOTE and rough sets theory. Knowl. Inf. Syst. 33, 245–265 (2012)

    Article  MATH  Google Scholar 

  41. Stefanowski, J., Wilk, S.: Selective pre-processing of imbalanced data for improving classification performance. In: International Conference on Data Warehousing and Knowledge Discovery, 2008, pp. 283–292 (2008)

  42. Cohen, G., Hilario, M., Sax, H., Hugonnet, S., Geissbuhler, A.: Learning from imbalanced data in surveillance of nosocomial infection. Artif. Intell. Med. 37(1), 7–18 (2006)

    Article  Google Scholar 

  43. Ramentol, E., Gondres, I., Lajes, S., Bello, R., Caballero, Y., Cornelis, C., Herrera, F.: Fuzzy-rough imbalanced learning for the diagnosis of High Voltage Circuit Breaker maintenance: the SMOTE-FRST-2T algorithm. Eng. Appl. Artif. Intell. 48, 134–139 (2016)

    Article  MATH  Google Scholar 

  44. Rivera, W.A.: Noise reduction a priori synthetic over-sampling for class imbalanced data sets. Inf. Sci. 408, 146–161 (2017)

    Article  MATH  Google Scholar 

  45. Kubat, M., Matwin, S.: Addressing the curse of imbalanced training sets: one-sided selection. In: ICML, 1997, p 179 (1997)

  46. Cervantes, J., Garcia-Lamont, F., Rodriguez, L., López, A., Castilla, J.R., Trueba, A.: PSO-based method for SVM classification on skewed data sets. Neurocomputing 228, 187–197 (2017)

    Article  Google Scholar 

  47. Alcalá-Fdez, J., Sanchez, L., Garcia, S., del Jesus, M.J., Ventura, S., Garrell, J.M., Otero, J., Romero, C., Bacardit, J., Rivas, V.M.: KEEL: a software tool to assess evolutionary algorithms for data mining problems. Soft. Comput. 13, 307–318 (2009)

    Article  Google Scholar 

  48. Dang, X.T., Tran, D.H., Hirose, O., Satou, K.: SPY: a novel resampling method for improving classification performance in imbalanced data. In: 2015 Seventh International Conference on Knowledge and Systems Engineering, 2015, pp. 280–285 (2015)

Download references

Acknowledgements

This work is supported by the National Key Research and Development Program of China (Nos. 2022YFE0197600, 2022YFC3302103), Key Laboratory of Ethnic Language Intelligent Analysis and Security Governance of MOE (No. 202306), Guangxi Key Laboratory of Trusted Software (No. KX202315), the Fundamental Research Funds for the Central Universities (No. CUC23GZ017), China Association of Higher Education 2023 Higher Education Science Research Planning Project “Exploration and Practical Research on the Education Path of Traditional Chinese Culture for International Students Coming to China in the Context of New Media” (No. 23LH0403), the National Natural Science Foundation of China (No. 72104016), the R&D Program of the Beijing Municipal Education Commission (No. SM202110005011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Shi.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Shi, L., Lu, T. et al. A Positive Sample Enhancement Algorithm with Fuzzy Nearest Neighbor Hybridization for Imbalance Data. Int. J. Fuzzy Syst. 26, 2707–2725 (2024). https://doi.org/10.1007/s40815-024-01721-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-024-01721-3

Keywords