Abstract
This paper is part of the increasing interest regarding the application of interval type-3 fuzzy logic in real-world problems, where a better handling of uncertainty can be useful in achieving enhanced results. The main contribution of this paper is the proposal of new methods, such as Interval Type-3 Reduction and a practical way for modeling Interval Type-3 Membership Functions, based on the Footprint of Uncertainty (FOU) and Core of Uncertainty (COU) concepts, which reduce the gap between the theory and the practical implementation of Mamdani Interval Type-3 Fuzzy Systems. The main aim of the paper is not proving the superiority of Interval Type-3 Fuzzy Systems but providing a framework and a comprehensive illustration of the theory concepts to help future research work in developing optimization methodologies and new applications for this kind of systems, as well as finding their potential applicability, which can result from their ability in handling more complex uncertainty. Simulation results with two illustrative application examples show the potential of the presented approach in achieving an efficient implementation of Interval type-3 fuzzy systems.




















Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
Not applicable.
References
Amador-Angulo, L., Castillo, O., Castro, J.R., Melin, P.: A new approach for interval Type-3 fuzzy control of nonlinear plants. Int. J. Fuzzy Syst. 25, 1624–1642 (2023). https://doi.org/10.1007/s40815-023-01470-9
Castillo, O., Castro, J.R., Melin, P.: Forecasting the COVID-19 with interval Type-3 fuzzy logic and the fractal dimension. Int. J. Fuzzy Syst. 25, 182–197 (2023). https://doi.org/10.1007/s40815-022-01351-7
Castillo, O., Melin, P.: Interval Type-3 fuzzy decision-making in material surface quality control. In: Jabeen, S.D., Ali, J., Castillo, O. (eds.) Soft Computing and Optimization, pp. 157–169. Springer, Singapore (2022)
Huang, H., Xu, H., Chen, F., Zhang, C., Mohammadzadeh, A.: An applied type-3 fuzzy logic system: practical Matlab Simulink and M-Files for robotic, control, and modeling applications. Symmetry. 15, 475 (2023). https://doi.org/10.3390/sym15020475
Peraza, C., Castillo, O., Melin, P., Castro, J.R., Yoon, J.H., Geem, Z.W.: A Type-3 fuzzy parameter adjustment in harmony search for the parameterization of fuzzy controllers. Int. J. Fuzzy Syst. (2023). https://doi.org/10.1007/s40815-023-01499-w
Taghieh, A., Mohammadzadeh, A., Zhang, C., Rathinasamy, S., Bekiros, S.: A novel adaptive interval type-3 neuro-fuzzy robust controller for nonlinear complex dynamical systems with inherent uncertainties. Nonlinear Dyn. 111, 411–425 (2023). https://doi.org/10.1007/s11071-022-07867-9
Wang, J., Tavoosi, J., Mohammadzadeh, A., Mobayen, S., Asad, J.H., Assawinchaichote, W., Vu, M.T., Skruch, P.: Non-singleton Type-3 fuzzy approach for flowmeter fault detection: experimental study in a gas industry. Sensors. 21, 7419 (2021). https://doi.org/10.3390/s21217419
Zadeh, L.A.: Fuzzy logic = computing with words. IEEE Trans. Fuzzy Syst. 4, 103–111 (1996). https://doi.org/10.1109/91.493904
Bilgundi, S.K., Sachin, R., Pradeepa, H., Nagesh, H.B., Likith Kumar, M.V.: Grid power quality enhancement using an ANFIS optimized PI controller for DG. Prot. Control Mod. Power Syst. 7, 1–14 (2022). https://doi.org/10.1186/s41601-022-00225-2
El-Hasnony, I.M., Barakat, S.I., Mostafa, R.R.: Optimized ANFIS model using hybrid metaheuristic algorithms for Parkinson’s disease prediction in IoT environment. IEEE Access. 8, 119252–119270 (2020). https://doi.org/10.1109/ACCESS.2020.3005614
Muralikumar, K., Ponnambalam, P.: Comparison of fuzzy and ANFIS controllers for asymmetrical 31-level cascaded inverter with super imposed carrier PWM technique. IEEE Access. 9, 82630–82646 (2021). https://doi.org/10.1109/ACCESS.2021.3086674
Pournazarian, B., Sangrody, R., Saeedian, M., Gomis-Bellmunt, O., Pouresmaeil, E.: Enhancing microgrid small-signal stability and reactive power sharing using ANFIS-tuned virtual inductances. IEEE Access. 9, 104915–104926 (2021). https://doi.org/10.1109/ACCESS.2021.3100248
Vargas, O.S., De LeónAldaco, S.E., Alquicira, J.A., Vela-Valdés, L.G., Núñez, A.R.L.: Adaptive Network-Based Fuzzy Inference System (ANFIS) applied to inverters: a survey. IEEE Trans. Power Electron. 39, 869–884 (2024). https://doi.org/10.1109/TPEL.2023.3327014
Mendel, J.M., John, R.I.B.: Type-2 fuzzy sets made simple. IEEE Trans. Fuzzy Syst. 10, 117–127 (2002). https://doi.org/10.1109/91.995115
Castillo, O., Melin, P., Valdez, F., Soria, J., Ontiveros-Robles, E., Peraza, C., Ochoa, P.: Shadowed Type-2 fuzzy systems for dynamic parameter adaptation in harmony search and differential evolution algorithms. Algorithms. 12, 17 (2019). https://doi.org/10.3390/a12010017
Phan, D., Bab-Hadiashar, A., Fayyazi, M., Hoseinnezhad, R., Jazar, R.N., Khayyam, H.: Interval Type 2 fuzzy logic control for energy management of hybrid electric autonomous vehicles. IEEE Trans. Intell. Veh. 6, 210–220 (2021). https://doi.org/10.1109/TIV.2020.3011954
Kayacan, E., Kayacan, E., Ramon, H., Kaynak, O., Saeys, W.: Towards agrobots: trajectory control of an autonomous tractor using Type-2 fuzzy logic controllers. IEEEASME Trans. Mechatron. 20, 287–298 (2015). https://doi.org/10.1109/TMECH.2013.2291874
Mo, H., Meng, Y., Wang, F.-Y., Wu, D.: Interval Type-2 fuzzy hierarchical adaptive cruise following-control for intelligent vehicles. IEEECAA J. Autom. Sin. 9, 1658–1672 (2022). https://doi.org/10.1109/JAS.2022.105806
Pham, D.-H., Lin, C.-M., Giap, V.N., Huynh, T.-T., Cho, H.-Y.: Wavelet Interval Type-2 Takagi–Kang–Sugeno hybrid controller for time-series prediction and chaotic synchronization. IEEE Access. 10, 104313–104327 (2022). https://doi.org/10.1109/ACCESS.2022.3210260
Hou, S., Chu, Y., Fei, J.: Robust intelligent control for a class of power-electronic converters using neuro-fuzzy learning mechanism. IEEE Trans. Power Electron. 36, 9441–9452 (2021). https://doi.org/10.1109/TPEL.2021.3049553
Montazeri-Gh, M., Yazdani, S.: Application of interval type-2 fuzzy logic systems to gas turbine fault diagnosis. Appl. Soft Comput. 96, 106703 (2020). https://doi.org/10.1016/j.asoc.2020.106703
Tao, X., Yi, J., Pu, Z., Xiong, T.: Robust adaptive tracking Control for hypersonic vehicle based on interval type-2 fuzzy logic system and small-gain approach. IEEE Trans. Cybern. 51, 2504–2517 (2021). https://doi.org/10.1109/TCYB.2019.2927309
Harirchian, E., Lahmer, T.: Improved rapid visual earthquake hazard safety evaluation of existing buildings using a type-2 fuzzy logic model. Appl. Sci. 10, 2375 (2020). https://doi.org/10.3390/app10072375
Ontiveros-Robles, E., Castillo, O., Melin, P.: Towards asymmetric uncertainty modeling in designing General Type-2 Fuzzy classifiers for medical diagnosis. Expert Syst. Appl. 183, 115370 (2021). https://doi.org/10.1016/j.eswa.2021.115370
Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man Mach. Stud. 7, 1–13 (1975). https://doi.org/10.1016/S0020-7373(75)80002-2
Castillo, O., Castro, J.R., Melin, P.: Interval Type-3 Fuzzy Systems: Theory and Design. Springer, Cham (2022)
Rickard, J.T., Aisbett, J., Gibbon, G.: Fuzzy subsethood for fuzzy sets of type-2 and generalized type- n. IEEE Trans. Fuzzy Syst. 17, 50–60 (2009). https://doi.org/10.1109/TFUZZ.2008.2006369
Mendez, G.M., Lopez-Juarez, I., Montes-Dorantes, P.N., Garcia, M.A.: A new method for the design of interval type-3 fuzzy logic systems with uncertain type-2 non-singleton inputs (IT3 NSFLS-2): a case study in a hot strip mill. IEEE Access. 11, 44065–44081 (2023). https://doi.org/10.1109/ACCESS.2023.3272531
Liu, Z., Mohammadzadeh, A., Turabieh, H., Mafarja, M., Band, S.S., Mosavi, A.: A new online learned interval type-3 fuzzy control system for solar energy management systems. IEEE Access. 9, 10498–10508 (2021). https://doi.org/10.1109/ACCESS.2021.3049301
Wu, D., Mendel, J.M.: Enhanced Karnik–Mendel algorithms for interval type-2 fuzzy sets and systems. In: NAFIPS 2007—2007 Annual Meeting of the North American Fuzzy Information Processing Society, pp. 184–189 (2007)
Wagner, C., Hagras, H.: zSlices—towards bridging the gap between interval and general type-2 fuzzy logic. In: 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence), pp. 489–497 (2008)
Ontiveros-Robles, E., Gonzalez-Vazquez, J.L., Castro, J.R., Castillo, O.: A hardware architecture for real-time edge detection based on interval type-2 fuzzy logic. In: 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 804–810 (2016)
Ontiveros-Robles, E., Melin, P., Castillo, O.: Comparative analysis of noise robustness of type 2 fuzzy logic controllers. Kybernetika 54, 175–201 (2018)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Ontiveros, E., Melin, P. & Castillo, O. Towards an Efficient Approach for Mamdani Interval Type-3 Fuzzy Inference Systems. Int. J. Fuzzy Syst. 26, 2172–2190 (2024). https://doi.org/10.1007/s40815-024-01722-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40815-024-01722-2