Skip to main content

Advertisement

Log in

The Allocations for Dual Fuzzy Cooperative Games

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

In our daily life, players may reduce their cooperation levels for various reasons. This paper studies how to evaluate and allocate the cooperation payoff when the players cooperate partially. Different from previous research that directly uses the cooperation level to calculate the payoffs of fuzzy coalitions, we introduce the concept of dual fuzzy cooperative games, where the payoffs of fuzzy coalitions equal the difference between the original payoff and the lost payoff caused by the decline of the cooperation level. Meanwhile, the dual Shapley value is introduced, and its axiomatic systems are studied. Further, a special kind of dual fuzzy cooperative game with Choquet integral form is presented. Finally, we provide an application of dual fuzzy cooperative games in the manufacturer–retailer supply chain to allocate the payoff for vertical co-op advertising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

Notes

  1. Note: “\(\vee\)” and “\(\wedge\)” indicate maximum and minimum, respectively.

References

  1. Aubin, J.P.: Cooperative fuzzy games. Math. Oper. Res. 6(1), 1–13 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  2. Basallote, M., Hernández-Mancera, C., Jiménez-Losada, A.: A new Shapley value for games with fuzzy coalitions. Fuzzy Set. Syst. 383, 51–67 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  3. Choquet, G.: Theory of capacities. Annales de l’institut Fourier 5, 131–295 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  4. de Clippel, G., Serrano, R.: Marginal contributions and externalities in the value. Econometrica 76(6), 1413–1436 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fryer, D., Strümke, I., Nguyen, H.: Shapley values for feature selection: The good, the bad, and the axioms. IEEE Access. 9, 144352–144360 (2021)

    Article  MATH  Google Scholar 

  6. Hart, S., Mas-Colell, A.: Potential, value and consistency. Econometrica 57(3), 589–614 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Haimanko, O.: The Banzhaf value and general semivalues for differentiable mixed games. Math. Oper. Res. 44(3), 767–782 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jørgensen, S., Zaccour, G.: Equilibrium pricing and advertising strategies in a marketing channel. J. Opt. Theory Appl. 102(1), 111–125 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Li, S., Zhang, Q.: A simplified expression of the Shapley function for fuzzy game. Eur. J. Oper. Res. 196(1), 234–245 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Li, M., Wang, Y., Sun, H., Cui, Z., Huang, Y., Chen, H.: Explaining a machine-learning lane change model with maximum entropy Shapley values. IEEE Trans. Intell. Veh. 8(6), 3620–3628 (2023)

    Article  MATH  Google Scholar 

  11. Lin, J., Xu, Z., Huang, Y., Chen, R.: The Choquet integral-based Shapley function for n-person cooperative games with probabilistic hesitant fuzzy coalitions. Expert Syst. Appl. 213, 118882 (2023)

    Article  Google Scholar 

  12. Meng, F.Y.: The Banzhaf-Owen value for fuzzy games with a coalition structure. Int. J. Math. Comput. Phy. Elect. Comput. En. 5(8), 1391–1395 (2011)

    MATH  Google Scholar 

  13. Meng, F.Y., Zhang, Q.: The Shapley function for fuzzy cooperative games with multilinear extension form. Appl. Math. Lett. 23(5), 644–650 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Meng, F.Y., Zhang, Q.: The symmetric Banzhaf value for fuzzy games with a coalition structure. Int. J. Auto. Comput. 9(6), 600–608 (2012)

    Article  MATH  Google Scholar 

  15. Meng, F.Y., Zhang, Q., Cheng, H.: The Owen value for fuzzy games with a coalition structure. Int. J. Fuzzy Syst. 14(1), 22–34 (2012)

    MathSciNet  MATH  Google Scholar 

  16. Myerson, R.B.: Conference structures and fair allocation rules. Int. J. Game Theory 9(3), 169–182 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  17. Nan, J.X., Wei, L.X., Li, D.F., Zhang, M.J.: Least square prenucleolus of fuzzy coalition cooperative games based on excesses of players. Oper. Res. Ma. Sci. 30(7), 77–82 (2021)

    MATH  Google Scholar 

  18. Okamoto, Y.: Some properties of the core on convex geometries. Math. Meth. Oper. Res. 56(3), 377–386 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Owen, G.: Multilinear extensions of games. Manage. Sci. 18(5), 64–79 (1971)

    MathSciNet  MATH  Google Scholar 

  20. Peleg, B.: On the reduced game property and its converse. Int. J. Game Theory 15(3), 187–200 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  21. Seyed Esfahani, M.M., Biazaran, M., Gharakhani, M.: A game theoretic approach to coordinate pricing and vertical co-op advertising in manufacturer–retailer supply chains. Eur. J. Oper. Res. 129(3), 263–273 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Shapley, L.S.: A value for n-person games. Ann. Math. Stud. 28, 307–318 (1953)

    MathSciNet  MATH  Google Scholar 

  23. Shapley, L.S.: Cores of convex games. Int. J. Game Theory 1(1), 11–26 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sprumont, Y.: Population monotonic allocation scheme for cooperative games with transferable utility. Games Econ. Be. 2(4), 378–394 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sobolev, A.I.: The characterization of optimality principles in cooperative games by functional equations. Math. Meth. Soc. Sci. 6(94), 150–165 (1975)

    MATH  Google Scholar 

  26. Thomson, W.: Monotonicity, stability and egalitarianism. Math. Soc. Sci. 8(1), 15–28 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tsurumi, M., Tanino, T., Inuiguchi, M.: A Shapley function on a class of cooperative fuzzy games. Eur. J. Oper. Res. 129(3), 596–618 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Xie, J., Neyret, A.: Co-op advertising and pricing models in manufacturer–retailer supply chains. Comput. Ind. En. 56(4), 1375–1385 (2009)

    Article  MATH  Google Scholar 

  29. Xie, J., Wei, J.: Coordinating advertising and pricing in a manufacturer–retailer channel. Eur. J. Oper. Res. 197(2), 785–791 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yu, X.H., Zhang, Q.: The fuzzy core in games with fuzzy coalitions. J. Comput. Appl. Math. 230(1), 173–186 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yu, X.H., Du, Z.P., Zou, Z.X., Zhang, Q., Zhou, Z.: Fuzzy Harsanyi solution for a kind of fuzzy coalition games. Fuzzy Set. Syst. 383, 27–50 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yue, J., Austin, J., Wang, M., Huang, Z.: Coordination of cooperative advertising in a two-level supply chain when manufacturer offers discount. Eur. J. Oper. Res. 68(1), 65–85 (2006)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The National Natural Science Foundation of China (No. 72371134), the Ministry of Education Humanities and Social Science Foundation of China (No. 22YJ630061), the Natural Science Foundation of Changsha in China (No. kq2202112), and the Startup Foundation for Introducing Talent of NUIST (No. 2022r059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zijun Li.

Appendices

Appendix A

Proof of Theorem 2

Existence. Similar to Shapley [22], the detail proofs are omitted.

Uniqueness. Similar to traditional cooperative games, we have \(v^{D} = \sum\limits_{\emptyset \ne T \subseteq U} {c_{T}^{D} u_{T} }\), where

$$ \begin{aligned} c_{T}^{D} = & \sum\limits_{S \subseteq T} {( - 1)^{{\left| {{\text{Supp}} T} \right| - \left| {{\text{Supp}} S} \right|}} \left( {v^{D} (S)} \right)} = \sum\limits_{S \subseteq T} {( - 1)^{{\left| {{\text{Supp}} T} \right| - \left| {{\text{Supp}} S} \right|}} \left( {v(1^{{{\text{Supp}} S}} ) - v(S^{D} )} \right)} \\ & = \sum\limits_{{{\text{Supp}} S \subseteq {\text{Supp}} T}} {( - 1)^{{\left| {{\text{Supp}} T} \right| - \left| {{\text{Supp}} S} \right|}} v(1^{{{\text{Supp}} S}} )} - \sum\limits_{{S^{D} \subseteq T^{D} }} {( - 1)^{{\left| {{\text{Supp}} T^{D} } \right| - \left| {{\text{Supp}} S^{D} } \right|}} v(S^{D} )} \\ \end{aligned} $$

and \(u_{T} (S) = \left\{ \begin{gathered} 1\;\;\;\;\;S \subseteq T \hfill \\ 0\;\;\;\;{\text{otherwise}} \hfill \\ \end{gathered} \right.\).

Let \(c_{{{\text{Supp}} T}} = \sum\limits_{{{\text{Supp}} S \subseteq {\text{Supp}} T}} {( - 1)^{{\left| {{\text{Supp}} T} \right| - \left| {{\text{Supp}} S} \right|}} v(1^{{{\text{Supp}} S}} )}\) and \(c_{{T^{D} }} = \sum\limits_{{S^{D} \subseteq T^{D} }} {( - 1)^{{\left| {{\text{Supp}} T^{D} } \right| - \left| {{\text{Supp}} S^{D} } \right|}} v(S^{D} )}\) for any \(T \subseteq U\), we have \(v^{D} = \sum\limits_{\emptyset \ne T \subseteq U} {\left( {c_{{{\text{Supp}} T}} - c_{{T^{D} }} } \right)u_{T} }\). From DFA, we need to prove the conclusion on the fuzzy unanimity game \(u_{T}\), i.e.,\(f^{D} (U,u_{T} ) = Sh^{D} (U,u_{T} )\). By DFC and DFS, we have \(f_{i}^{D} (U,u_{T} ) = \left\{ {\begin{array}{*{20}c} {\frac{1}{{\left| {{\text{Supp}} T} \right|}}} & {i \in {\text{Supp}} T} \\ 0 & {i \in {\text{Supp}} T} \\ \end{array} } \right.\).

On the other hand, we obtain \(Sh_{i}^{D} (U,u_{T} ) = \left\{ {\begin{array}{*{20}c} {\frac{1}{{\left| {{\text{Supp}} T} \right|}}} & {i \in {\text{Supp}} T} \\ 0 & {i \in {\text{Supp}} T} \\ \end{array} } \right.\) by Eq. (8). Therefore,\(Sh^{D} = f^{D}\).□

Appendix B

Proof of Theorem 3

Existence. \(Sh^{D}\) obviously satisfies DFE. Next, we show that \(Sh^{D}\) owns DFBC, namely

$$ \begin{gathered} Sh_{i} (1^{{{\text{Supp}} U}} ,v) - Sh_{i} (U^{D} ,v) - [Sh_{i} (1^{{{\text{Supp}} U\backslash j}} ,v) - Sh_{i} (U^{D} \backslash U^{D} (j),v)] \hfill \\ = Sh_{j} (1^{{{\text{Supp}} U}} ,v) - Sh_{j} (U^{D} ,v) - [Sh_{j} (1^{{{\text{Supp}} U\backslash i}} ,v) - Sh_{j} (U^{D} \backslash U^{D} (i),v)] \hfill \\ \end{gathered} $$

for all \(i,j \in {\text{Supp}} U\) with \(i \ne j\).

According to Theorem A in [6], we have

$$ Sh_{i} (1^{{{\text{Supp}} U}} ,v) - Sh_{i} (1^{{{\text{Supp}} U\backslash j}} ,v) = Sh_{j} (1^{{{\text{Supp}} U}} ,v) - Sh_{j} (1^{{{\text{Supp}} U\backslash i}} ,v) $$

for all \(i,j \in {\text{Supp}} U\) with \(i \ne j\).

Therefore, we need to show

$$ Sh_{i} (U^{D} ,v) - Sh_{i} (U^{D} \backslash U^{D} (j),v) = Sh_{j} (U^{D} ,v) - Sh_{j} (U^{D} \backslash U^{D} (i),v) $$

for all \(i,j \in {\text{Supp}} U\) with \(i \ne j\).

From Eq. (1), we know

$$ \begin{gathered} Sh_{i} (U^{D} ,v) - Sh_{i} (U^{D} \backslash U^{D} (j),v) \hfill \\ \quad \quad = \sum\limits_{{i \in {\text{Supp}} R^{D} \subseteq {\text{Supp}} U^{D} }} {\frac{{\left( {\left| {{\text{Supp}} R^{D} } \right| - 1} \right)!\left( {\left| {{\text{Supp}} U^{D} } \right| - \left| {{\text{Supp}} R^{D} } \right|} \right)!}}{{\left| {{\text{Supp}} U^{D} } \right|!}}} (v(R^{D} ) - v(R^{D} \backslash U^{D} (i))) \hfill \\ \quad \quad - \sum\limits_{{i \in {\text{Supp}} R^{D} \subseteq {\text{Supp}} (U^{D} \backslash U^{D} (j))}} {\frac{{\left( {\left| {{\text{Supp}} R^{D} } \right| - 1} \right)!\left( {\left| {{\text{Supp}} (U^{D} \backslash U^{D} (j))} \right| - \left| {{\text{Supp}} R^{D} } \right|} \right)!}}{{\left| {{\text{Supp}} (U^{D} \backslash U^{D} (j))} \right|!}}} (v(R^{D} ) - v(R^{D} \backslash U^{D} (i))) \hfill \\ \quad \quad = \sum\limits_{{i \in {\text{Supp}} R^{D} \subseteq {\text{Supp}} U^{D} }} {\frac{{\left( {\left| {{\text{Supp}} R^{D} } \right| - 1} \right)!\left( {\left| {{\text{Supp}} U^{D} } \right| - \left| {{\text{Supp}} R^{D} } \right|} \right)!}}{{\left| {{\text{Supp}} U^{D} } \right|!}}} (v(R^{D} ) - v(R^{D} \backslash U^{D} (i))) \hfill \\ \quad \quad - \sum\limits_{{i \in {\text{Supp}} R^{D} \subseteq {\text{Supp}} U^{D} }} {\frac{{\left( {\left| {{\text{Supp}} R^{D} } \right| - 1} \right)!(\left| {{\text{Supp}} U^{D} } \right| - \left| {{\text{Supp}} R^{D} } \right|)!}}{{\left| {{\text{Supp}} U^{D} } \right|!}}} (v((R^{D} \backslash U^{D} (j)) - v((R^{D} \backslash \{ U^{D} (j),U^{D} (i)\} ) \hfill \\ \quad \quad = \sum\limits_{{i \in {\text{Supp}} R^{D} \subseteq {\text{Supp}} U^{D} }} {\frac{{\left( {\left| {{\text{Supp}} R^{D} } \right| - 1} \right)!\left( {\left| {{\text{Supp}} U^{D} } \right| - \left| {{\text{Supp}} R^{D} } \right|} \right)!}}{{\left| {{\text{Supp}} U^{D} } \right|!}}} \left[ {v(R^{D} ) - v(R^{D} \backslash U^{D} (i)) - v(R^{D} \backslash U^{D} (j))} \right. \hfill \\ \left. {\quad \quad + v(R^{D} \backslash \{ U^{D} (i),U^{D} (j)\} )} \right] \hfill \\ \end{gathered} $$

Since the above expression is symmetric for i and j, we can similarly derive this expression for \(Sh_{j} (U^{D} ,v) - Sh_{j} (U^{D} \backslash U^{D} (i),v)\). Therefore, DFBC holds.

Uniqueness. Let \(U \in L(N)\) and \(v^{D} \in DG(N)\). For any \(U \in L(N)\), if \(\left| {SuppU} \right| = 1\), without loss of generality, let U = {U(i)}. By DFE, we have.

\(f^{D} (U,v^{D} ) = f_{i} (1^{{{\text{Supp}} U}} ,v) - f_{i} (U^{D} ,v) = v(1^{{{\text{Supp}} U(i)}} ) - v(U^{D} (i)) = Sh_{i} (1^{{{\text{Supp}} U(i)}} ,v) - Sh_{i} (U^{D} ,v)\).

Assume that \(f^{D} = Sh^{D}\) when \(\left| {{\text{Supp}} U} \right| \le n - 1\)(\(n \ge 2\)). Next, we prove that the conclusion is true when \(\left| {{\text{Supp}} U} \right| = n\). By DFBC, we obtain

$$ \begin{gathered} f_{i} (1^{{{\text{Supp}} U}} ,v) - f_{i} (U^{D} ,v) - [f_{i} (1^{{{\text{Supp}} U\backslash j}} ,v) - f_{i} (U^{D} \backslash U^{D} (j),v)] \hfill \\ \quad \quad = f_{j} (1^{{{\text{Supp}} U}} ,v) - f_{j} (U^{D} ,v) - [f_{j} (1^{{{\text{Supp}} U\backslash i}} ,v) - f_{j} (U^{D} \backslash U^{D} (i),v)] \hfill \\ \end{gathered} $$

for all \(i,j \in {\text{Supp}} U\) with\(i \ne j\).

By assumption, we get

$$ \begin{aligned} f_{i} (1^{{{\text{Supp}} U}} ,v) - & f_{i} (U^{D} ,v) - [f_{j} (1^{{{\text{Supp}} U}} ,v) - f_{j} (U^{D} ,v)] \\ & = Sh_{i} (1^{{{\text{Supp}} U\backslash j}} ,v) - Sh_{i} (U^{D} \backslash U^{D} (j),v) - [Sh_{j} (1^{{{\text{Supp}} U\backslash i}} ,v) - Sh_{j} (U^{D} \backslash U^{D} (i),v)] \\ \end{aligned} $$
(a.1)

Because \(Sh^{D}\) satisfies DFBC, from Eq. (a.1) we have namely

$$ \begin{aligned} f_{i} (1^{{{\text{Supp}} U}} ,v) - & f_{i} (U^{D} ,v) - [f_{j} (1^{{{\text{Supp}} U}} ,v) - f_{j} (U^{D} ,v)] \\ & = Sh_{i} (1^{{{\text{Supp}} U}} ,v) - Sh_{i} (U^{D} ,v) - [Sh_{j} (1^{{{\text{Supp}} U}} ,v) - Sh_{j} (U^{D} ,v)] \\ \end{aligned} $$
$$ \begin{aligned} f_{i} (1^{{{\text{Supp}} U}} ,v) - & f_{i} (U^{D} ,v) - [Sh_{i} (1^{{{\text{Supp}} U}} ,v) - Sh_{i} (U^{D} ,v)] \\ & = f_{j} (1^{{{\text{Supp}} U}} ,v) - f_{j} (U^{D} ,v) - [Sh_{j} (1^{{{\text{Supp}} U}} ,v) - Sh_{j} (U^{D} ,v)] \\ \end{aligned} $$
(a.2)

From Eq. (a.2), we derive

$$ f_{i}^{D} (U,v^{D} ) - [Sh_{i}^{D} (U,v^{D} )] = f_{j}^{D} (U,v^{D} ) - [Sh_{j}^{D} (U,v^{D} )] $$

Take the sum for \(j \in {\text{Supp}} U\), we obtain

$$ \left| {{\text{Supp}} U} \right|[f_{i}^{D} (U,v^{D} ) - Sh_{i}^{D} (U,v^{D} )] = \sum\limits_{{j \in {\text{Supp}} U}} {f_{j}^{D} (U,v^{D} )} - \sum\limits_{{j \in {\text{Supp}} U}} {Sh_{j}^{D} (U,v^{D} )} = v^{D} (U) - v^{D} (U) = 0 $$

Therefore,\(f_{i}^{D} (U,v^{D} ) = Sh_{i}^{D} (U,v^{D} )\) for all \(i \in {\text{Supp}} U\), and the conclusion is true. □

Appendix C

Proof of Theorem 3

Existence. By Eq. (8), STPDFG holds. Next, let us show that \(Sh_{i} (1^{{{\text{Supp}} U}} ,v) - Sh_{i} (U^{D} ,v) =\) \(Sh_{i} (1^{{{\text{Supp}} R}} ,v^{{f,1^{{{\text{Supp}} R}} }} ) - Sh_{i} (R^{D} ,v^{{f,R^{D} }} )\) for any \(R \subseteq U\) and any \(i \in {\text{Supp}} R\). From Theorem B in [6], we know that \(Sh_{i} (1^{{{\text{Supp}} U}} ,v) = Sh_{i} (1^{{{\text{Supp}} S}} ,v^{{f,1^{{{\text{Supp}} R}} }} )\). Therefore, we just need to show that \(Sh_{i} (U^{D} ,v) = Sh_{i} (S^{D} ,v^{{f,S^{D} }} )\).

From the linearity of \(Sh(U^{D} ,v)\) and \(v = \sum\limits_{{\emptyset \ne T^{D} \subseteq U^{D} }} {c_{{T^{D} }} u_{{T^{D} }} }\), where \(c_{{T^{D} }} = \sum\limits_{{S^{D} \subseteq T^{D} }} {( - 1)^{{\left| {{\text{Supp}} T^{D} } \right| - \left| {{\text{Supp}} S^{D} } \right|}} v(S^{D} )}\) and \(u_{{T^{D} }} (S^{D} ) = \left\{ \begin{gathered} 1,\;\;\;\;\;S^{D} \subseteq T^{D} \hfill \\ 0\;\;\;\;\;{\text{otherwise}} \hfill \\ \end{gathered} \right.\). We need to prove the conclusion on the fuzzy unanimity game \(u_{{T^{D} }}\). Take \(u_{{T^{D} }}\) such that \(T^{D} \subseteq U^{D}\) and \(R^{D} \subseteq U^{D}\). By Definition 10, we know that

$$ u_{{T^{D} }}^{{Sh,R^{D} }} (Q^{D} ) = u_{{T^{D} }} (Q^{D} \vee (R^{D} )^{c} ) - \sum\limits_{{i \in {\text{Supp}} (R^{D} )^{c} }} {Sh_{i} (Q^{D} \vee (R^{D} )^{c} ,v)} $$

for any \(Q^{D} \subseteq R^{D}\).

If \({\text{Supp}} (T^{D} \wedge R^{D} ) = \emptyset\), then \(T^{D} \subseteq (R^{D} )^{c}\). For any \(Q^{D} \subseteq R^{D}\), we have

$$ u_{{T^{D} }} (Q^{D} \vee (R^{D} )^{c} ) = \sum\limits_{{i \in {\text{Supp}} (R^{D} )^{c} }} {Sh_{i} (Q^{D} \vee (R^{D} )^{c} ,u_{{T^{D} }} )} = 1 $$

Thus,\(u_{{T^{D} }}^{{Sh,R^{D} }} (Q^{D} ) \equiv 0\) for any \(Q^{D} \subseteq R^{D}\). Further,\(Sh_{i} (R^{D} ,u_{{T^{D} }}^{{Sh,R^{D} }} ) = Sh_{i} (U^{D} ,u_{{T^{D} }} ) = 0\) for any \(i \in {\text{Supp}} R^{D}\).

If \({\text{Supp}} (T^{D} \wedge R^{D} ) \ne \emptyset\), then, for any \(Q^{D} \subseteq R^{D}\) with \(T^{D} \wedge R^{D} \subseteq Q^{D}\), we have

$$ \begin{aligned} u_{{T^{D} }}^{{Sh,R^{D} }} (Q^{D} ) = & u_{{T^{D} }} (Q^{D} \vee (R^{D} )^{c} ) \\ & - \sum\limits_{{i \in {\text{Supp}} (R^{D} )^{c} }} {Sh_{i} (Q^{D} \vee (R^{D} )^{c} ,u_{{T^{D} }} )} \\ & = 1 - (1 - \sum\limits_{{i \in {\text{Supp}} (R^{D} \wedge T^{D} )}} {Sh_{i} (Q^{D} \vee (R^{D} )^{c} ,u_{{T^{D} }} )} ) \\ & = 1 - \left( {1 - \frac{{\left| {{\text{Supp}} (R^{D} \wedge T^{D} )} \right|}}{{\left| {{\text{Supp}} T^{D} } \right|}}} \right) \\ & = \frac{{\left| {{\text{Supp}} (R^{D} \wedge T^{D} )} \right|}}{{\left| {{\text{Supp}} T^{D} } \right|}} \\ \end{aligned} $$

For any \(Q^{D} \subseteq R^{D}\) with \(T^{D} \wedge R^{D} \not\subset Q^{D}\), we get

$$ u_{{T^{D} }}^{{Sh,R^{D} }} (Q^{D} ) = u_{{T^{D} }} (Q^{D} \vee (R^{D} )^{c} ) - \sum\limits_{{i \in {\text{Supp}} (R^{D} )^{c} }} {Sh_{i} (Q^{D} \vee (R^{D} )^{c} ,u_{{T^{D} }} )} = 0 $$

Thus,

$$ u_{{T^{D} }}^{{Sh,R_{d} }} (Q^{D} ) = \left\{ \begin{gathered} \frac{{\left| {{\text{Supp}} (R^{D} \wedge T^{D} )} \right|}}{{\left| {{\text{Supp}} T^{D} } \right|}},\;\;\;\;\;\;\;\;R^{D} \wedge T^{D} \subseteq Q^{D} \hfill \\ 0,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;R^{D} \wedge T^{D} \not\subset Q^{D} \hfill \\ \end{gathered} \right. $$

Therefore, \(Sh_{i} (R^{D} ,u_{{T^{D} }}^{{Sh,R^{D} }} ) = \left\{ \begin{gathered} \frac{1}{{\left| {{\text{Supp}} T^{D} } \right|}},\;\;\;\;i \in {\text{Supp}} (R^{D} \wedge T^{D} ) \hfill \\ 0,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;i \in {\text{Supp}} (R^{D} \backslash T^{D} )\;\; \hfill \\ \end{gathered} \right. = Sh_{i} (U^{D} ,u_{{T^{D} }} )\) for all \(i \in {\text{Supp}} R^{D}\).

Uniqueness. From DFE, we obtain

$$ \sum\limits_{{i \in {\text{Supp}} U}} {f_{i}^{D} (U,v^{D} )} = \sum\limits_{{i \in {\text{Supp}} U}} {[f_{i} (1^{{{\text{Supp}} U}} ,v) - f_{i} (U^{D} ,v)]} = v(1^{{{\text{Supp}} U}} ) - v(U^{D} ) = v^{D} (U) $$

If \(\left| {{\text{Supp}} U} \right| = 1\), we show that \(f_{i}^{D} (U(i),v^{D} ) = f_{i} (1^{SuppU(i)} ,v) - f_{i} (U^{D} (i),v) = v(1^{{{\text{Supp}}U(i)}} ) - v(U^{D} (i)) = v^{D} (U(i))\). Let \(v(1^{{{\text{Supp}} U(i)}} ) - v(U^{D} (i)) = \delta\). We consider the game \((\{ U(i),U(j)\} ,v^{D} )\), where \(i \ne j\), such that \(v^{D} (U(i)) = v^{D} (\{ U(i),U(j)\} ) = \delta\) and \(v^{D} (U(j)) = 0\).

By STPDFG, we derive \(f_{i}^{D} (\{ U(i),U(j)\} ,v^{D} ) = f_{i} (1^{{{\text{Supp}} \{ U(i),U(j)\} }} ,v) - f_{i} (\{ U^{D} (i),U^{D} (j)\} ,v) = \delta\) and \(f_{j}^{D} (\{ U(i),U(j)\} ,v^{D} ) =\)\(f_{j} (1^{{{\text{Supp}} \{ U(i),U(j)\} }} ,v) - f_{j} (\{ U^{D} (i),U^{D} (j)\} ,v) = 0\). Hence,

$$ v_{{f^{D} ,U(i)}}^{D} (U(i)) = \delta - 0 = \delta = v^{D} (U(i)) $$

From the consistency, we have

$$ \begin{gathered} \delta = f_{i}^{D} (\{ U(i),U(j)\} ,v^{D} ) = f_{i} (1^{{{\text{Supp}} \{ U(i),U(j)\} }} ,v) - f_{i} (\{ U^{D} (i),U^{D} (j)\} ,v) \hfill \\ = f_{i} (1^{{{\text{Supp}} U(i)}} ,v^{{f,1^{{{\text{Supp}} U(i)}} }} ) - f_{i} (U^{D} (i),v^{{f,U^{D} (i)}} ) = f_{i} (1^{{{\text{Supp}} U(i)}} ,v) - f_{i} (U^{D} (i),v) = f_{i}^{D} (U(i),v^{D} ) \hfill \\ \end{gathered} $$

Thus, \(f_{i}^{D} (U(i),v^{D} ) = v^{D} (U(i))\).

This indeed holds for \(\left| {{\text{Supp}} U} \right| = 2\) by the property of STPDFG. Let \(\left| {{\text{Supp}} U} \right| \ge 3\). Assume that

$$ \sum\limits_{{i \in {\text{Supp}} U}} {f_{i}^{D} (U,v^{D} )} = v^{D} (U) $$

for \(v^{D}\) with less than \(\left| {{\text{Supp}} U} \right|\) players, when there are \(\left| {{\text{Supp}} U} \right|\) players. By DFC, we have

$$ \begin{gathered} \sum\limits_{{i \in {\text{Supp}} U}} {f_{i}^{D} (U,v^{D} )} = \sum\limits_{{i \in {\text{Supp}} U}} {[f_{i} (1^{{{\text{Supp}} U}} ,v) - f_{i} (U^{D} ,v)]} \hfill \\ = \sum\limits_{{i \in {\text{Supp}} U\backslash j}} {[f_{i} (1^{{{\text{Supp}} U\backslash j}} ,v^{{f,1^{{{\text{Supp}} U\backslash j}} }} ) - f_{i} (U^{D} \backslash U^{D} (j),v^{{f,U^{D} \backslash U^{D} (j)}} )]} + f_{j} (1^{{{\text{Supp}} U}} ,v) - f_{j} (U^{D} ,v) \hfill \\ \end{gathered} $$

By assumption,\(f^{D}\) satisfies DFE when there are \(\left| {{\text{Supp}} U} \right| - 1\) players.

Thus, the above equation can be written as

$$ \begin{aligned} \sum\limits_{{i \in {\text{Supp}} U}} {f_{i}^{D} (U,v^{D} )} = & \sum\limits_{{i \in {\text{Supp}} U}} {[f_{i} (1^{{{\text{Supp}} U}} ,v) - f_{i} (U^{D} ,v)]} \\ & = v^{{f,1^{{{\text{Supp}} U\backslash j}} }} (1^{{{\text{Supp}} U\backslash j}} ) - v^{{f,U^{D} \backslash U^{D} (j)}} (U^{D} \backslash U^{D} (j)) + f_{j} (1^{{{\text{Supp}} U}} ,v) - f_{j} (U^{D} ,v) \\ & = v_{{f^{D} ,R}}^{D} \left( {U\backslash U(j)} \right) + f_{j}^{D} (U,v^{D} ) \\ \end{aligned} $$

According to Definition 10, we obtain \(\sum\limits_{{i \in {\text{Supp}} U}} {f_{i}^{D} (U,v^{D} )} = v^{D} \left( U \right)\). Thus, DFE holds for \(f^{D}\).

If \(\left| {{\text{Supp}} U} \right| = 2\), by STPDFG we derive

$$ \begin{aligned} f_{i}^{D} (U,v^{D} ) = & f_{i} (1^{{{\text{Supp}} U}} ,v) - f_{i} (U^{D} ,v) = \frac{1}{2}(v^{D} (U) + v^{D} (U(i)) - v^{D} (U(j))) \\ & = Sh_{i} (1^{{{\text{Supp}} U}} ,v) - Sh_{i} (U^{D} ,v) = Sh_{i}^{D} (U,v^{D} ) \\ \end{aligned} $$
(a.3)

and

$$ \begin{aligned} f_{j}^{D} (U,v^{D} ) = & f_{j} (1^{{{\text{Supp}} U}} ,v) - f_{j} (U^{D} ,v) = \frac{1}{2}(v^{D} (U) + v^{D} (U(j)) - v^{D} (U(i))) \\ & = Sh_{j} (1^{{{\text{Supp}} U}} ,v) - Sh_{j} (U^{D} ,v) = Sh_{j}^{D} (U,v^{D} ) \\ \end{aligned} $$
(a.4)

for all \(i,j \in {\text{Supp}} U\) such that \(i \ne j\).

From Eqs. (a.3) and (a.4), we get

$$ f_{i}^{D} (U,v^{D} ) - f_{j}^{D} (U,v^{D} ) = f_{i} (1^{{{\text{Supp}} U}} ,v) - f_{i} (U^{D} ,v) - [f_{j} (1^{{{\text{Supp}} U}} ,v) - f_{j} (U^{D} ,v)] $$
$$ = Sh_{i} (1^{{{\text{Supp}} U}} ,v) - Sh_{i} (U^{D} ,v) - [Sh_{j} (1^{{{\text{Supp}} U}} ,v) - Sh_{j} (U^{D} ,v)] $$
$$ = Sh_{i}^{D} (U,v^{D} ) - Sh_{j}^{D} (U,v^{D} ) $$
$$ = v^{D} (U(i)) - v^{D} (U(j)) $$
(a.5)

We assume that \(f^{D} = Sh^{D}\) for vD with \(\left| {{\text{Supp}} U} \right| - 1\) players. Now, we show that \(f^{D} = Sh^{D}\) for vD with \(\left| {{\text{Supp}} U} \right|\) players. For each fuzzy coalition \(R \subseteq U\) with \(\left| {{\text{Supp}} R} \right| = 2\), by \(v_{{f^{D} ,R}}^{D}\), we denote the dual fuzzy reduced game on \({\text{Supp}} R = \{ i,j\}\) for \(f^{D}\), and by \(v_{{Sh^{D} ,R}}^{D}\), we express the reduced game for \(Sh^{D}\). Since \({\text{Supp}} R = \{ i,j\}\),\({\text{Supp}} Q = \{ i\}\), and \({\text{Supp}} (R^{c} \cup Q) = {\text{Supp}} U\backslash j\), \(v_{{f^{D} ,R}}^{D} (U(i))\) and \(v_{{Sh^{D} ,R}}^{D} (U(i))\) depend on \(f^{D}\) and \(Sh^{D}\) through dual fuzzy cooperative game vD with \(\left| {{\text{Supp}} U} \right| - 1\) players. By the induction assumption, we get

$$ v_{{f^{D} ,R}}^{D} (U(i)) = v_{{Sh^{D} ,R}}^{D} (U(i)) $$
(a.6)

and

$$ v_{{f^{D} ,R}}^{D} (U(j)) = v_{{Sh^{D} ,R}}^{D} (U(j)) $$
(a.7)

By DFC, we have

$$ f_{i}^{D} (R,v_{{f^{D} ,R}}^{D} ) - f_{j}^{D} (R,v_{{f^{D} ,R}}^{D} ) = f_{i}^{D} (U,v^{D} ) - f_{j}^{D} (U,v^{D} ) $$
(a.8)

and

$$ Sh_{i}^{D} (R,v_{{Sh^{D} ,R}}^{D} ) - Sh_{j}^{D} (R,v_{{Sh^{D} ,R}}^{D} ) = Sh_{i}^{D} (U,v^{D} ) - Sh_{j}^{D} (U,v^{D} ) $$
(a.9)

According to Eq. (a.5), the left sides of Eqs. (a.8) and (a.9) are equal to \(v_{{f^{D} ,R}}^{D} (U(i)) - v_{{f^{D} ,R}}^{D} (U(j))\) and \(v_{{Sh^{D} ,R}}^{D} (U(i)) - v_{{Sh^{D} ,R}}^{D} (U(j))\), respectively.

Equations (a.6)-(a.9) show that \(f_{i}^{D} (U,v^{D} ) - f_{j}^{D} (U,v^{D} ) = Sh_{i}^{D} (U,v^{D} ) - Sh_{j}^{D} (U,v^{D} )\). As \(\sum\limits_{{i \in {\text{Supp}} U}} {f_{i}^{D} (U,v^{D} )} = \sum\limits_{{i \in {\text{Supp}} U}} {Sh_{i}^{D} (U,v^{D} )}\), we derive \(f_{i}^{D} (U,v^{D} ) = Sh_{i}^{D} (U,v^{D} )\) for any \(i \in {\text{Supp}} U\). □

Appendix D

Proof of Theorem 7

By Eq. (10), we have

$$ \begin{aligned} v^{D,C} (S) = & v(1^{{{\text{Supp}} S}} ) - h_{1} (S^{D} )v(1^{{{\text{Supp}} S}} ) - \sum\limits_{l = 2}^{{q(S_{d} )}} {v(1^{{{\text{Supp}} S_{{h_{l} (S^{D} )}}^{D} }} )\left( {h_{l} (S^{D} ) - h_{l - 1} (S^{D} )} \right)} \\ & = \left( {1 - h_{1} (S^{D} )} \right)v(1^{{{\text{Supp}} S}} ) - \sum\limits_{l = 2}^{{q(S_{d} )}} {v(1^{{{\text{Supp}} S_{{h_{l} (S^{D} )}}^{D} }} )\left( {h_{l} (S^{D} ) - h_{l - 1} (S^{D} )} \right)} \\ & = h_{q(S)} (S)v(1^{{{\text{Supp}} S}} ) - \sum\limits_{l = 2}^{{q(S^{D} )}} {v(1^{{{\text{Supp}} S_{{h_{l} (S^{D} )}}^{D} }} )\left( {h_{l} (S^{D} ) - h_{l - 1} (S^{D} )} \right)} \\ & = \left( {1 - h_{{q(S^{D} )}} (S^{D} )} \right)v(1^{{{\text{Supp}} S}} ) + \left( {h_{q(S)} (S) - \left( {1 - h_{{q(S^{D} )}} (S^{D} )} \right)} \right)v(1^{{{\text{Supp}} S}} ) - \sum\limits_{l = 2}^{{q(S^{D} )}} {v(1^{{{\text{Supp}} S_{{h_{l} (S^{D} )}}^{D} }} )\left( {h_{l} (S^{D} ) - h_{l - 1} (S^{D} )} \right)} \\ & = \left( {1 - h_{{q(S^{D} )}} (S^{D} )} \right)v(1^{{{\text{Supp}} S}} ) + \left( {h_{q(S)} (S) - \left( {1 - \left( {1 - h_{1} (S)} \right)} \right)} \right)v(1^{{{\text{Supp}} S}} ) - \sum\limits_{l = 2}^{{q(S^{D} )}} {v(1^{{{\text{Supp}} S_{{h_{l} (S^{D} )}}^{D} }} )\left( {h_{l} (S^{D} ) - h_{l - 1} (S^{D} )} \right)} \\ & = \left( {1 - h_{{q(S^{D} )}} (S^{D} )} \right)v(1^{{{\text{Supp}} S}} ) + \left( {h_{q(S)} (S) - h_{1} (S)} \right)v(1^{{{\text{Supp}} S}} ) - \sum\limits_{l = 2}^{{q(S^{D} )}} {v(1^{{{\text{Supp}} S_{{h_{l} (S^{D} )}}^{D} }} )\left( {h_{l} (S^{D} ) - h_{l - 1} (S^{D} )} \right)} \\ & = h_{1} (S)v(1^{{{\text{Supp}} S}} ) + \sum\limits_{l = 2}^{q(S)} {\left( {v(1^{{{\text{Supp}} S}} ) - v(1^{{{\text{Supp}} S\backslash {\text{Supp}} S_{{h_{l} (S)}} }} )} \right)\left( {h_{l} (S) - h_{l - 1} (S)} \right)} \\ \end{aligned} $$
(a.10)

On the other hand,

$$ v^{C} (S) = \sum\limits_{l = 1}^{q(S)} {v(1^{{{\text{Supp}} S_{{h_{l} (S)}} }} )\left( {h_{l} (S) - h_{l - 1} (S)} \right)} = h_{1} (S)v(1^{{{\text{Supp}} S}} ) + \sum\limits_{l = 2}^{q(S)} {v(1^{{{\text{Supp}} S_{{h_{l} (S)}} }} )\left( {h_{l} (S) - h_{l - 1} (S)} \right)} $$
(a.11)

Since v is supper-additive, we have \(v(1^{{{\text{Supp}} S}} ) - v(1^{{{\text{Supp}} S\backslash {\text{Supp}} S_{{h_{l} (S)}} }} ) \ge v(1^{{{\text{Supp}} S_{{h_{l} (S)}} }} )\) for any \(l = 1,2, \ldots ,q(S)\). Thus, \(v^{D,C} (S) \ge v^{C} (S)\) for any \(S \subseteq U\).□

Appendix E

Proof of Theorem 9

Existence. For DFE, we derive.

$$ \begin{aligned} \sum\limits_{{i \in {\text{Supp}} U}} {Sh_{i}^{D,C} (U,v^{D,C} )} = & \sum\limits_{{i \in {\text{Supp}} U}} {Sh_{i} (1^{{{\text{Supp}} U}} ,v)} - \sum\limits_{{i \in {\text{Supp}} U}} {\sum\limits_{l = 1}^{{q(U^{D} )}} {Sh_{i} (1^{{{\text{Supp}} U_{{h_{l} (U^{D} )}}^{D} }} ,v)\left( {h_{l} (U^{D} ) - h_{l - 1} (U^{D} )} \right)} } \\ & = v(1^{{{\text{Supp}} U}} ) - \sum\limits_{l = 1}^{{q(U^{D} )}} {v(1^{{{\text{Supp}} U_{{h_{l} (U^{D} )}}^{D} }} )\left( {h_{l} (U^{D} ) - h_{l - 1} (U^{D} )} \right)} \\ & = v^{D,C} (U). \\ \end{aligned} $$

For DFBC: we need to show that

$$ \begin{gathered} \left[ {Sh_{i} (1^{{{\text{Supp}} U}} ,v) - \sum\limits_{l = 1}^{{q(U^{D} )}} {Sh_{i} (1^{{{\text{Supp}} U_{{h_{l} (U^{D} )}}^{D} }} ,v)\left( {h_{l} (U^{D} ) - h_{l - 1} (U^{D} )} \right)} } \right] - \left[ {Sh_{i} (1^{{{\text{Supp}} U\backslash j}} ,v)} \right. \hfill \\ \left. {\quad - \sum\limits_{l = 1}^{{q(U^{D} )}} {Sh_{i} (1^{{{\text{Supp}} U_{{h_{l} (U^{D} )}}^{D} \backslash j}} ,v)\left( {h_{l} (U^{D} \backslash U^{D} (j)) - h_{l - 1} (U^{D} \backslash U^{D} (j))} \right)} } \right] \hfill \\ \quad = \left[ {Sh_{j} (1^{{{\text{Supp}} U}} ,v) - \sum\limits_{l = 1}^{{q(U^{D} )}} {Sh_{j} (1^{{{\text{Supp}} U_{{h_{l} (U^{D} )}}^{D} }} ,v)\left( {h_{l} (U^{D} ) - h_{l - 1} (U^{D} )} \right)} } \right] - [Sh_{j} (1^{{{\text{Supp}} U\backslash i}} ,v) \hfill \\ \quad \left. { - \sum\limits_{l = 1}^{{q(U_{d} )}} {Sh_{j} \left( {1^{{{\text{Supp}} U_{{h_{l} (U^{D} )}}^{D} \backslash i}} ,v} \right)\left( {h_{l} (U^{D} \backslash U^{D} (i)) - h_{l - 1} (U^{D} \backslash U^{D} (i))} \right)} } \right] \hfill \\ \quad - \left[ {Sh_{i} (1^{{{\text{Supp}} U\backslash j}} ,v)} \right. \hfill \\ \end{gathered} $$

for any \(S \subseteq U\) and all \(i,j \in {\text{Supp}} S\) with \(i \ne j\).

By Theorem A in [6], we have

$$ Sh_{i} (1^{{{\text{Supp}} U}} ,v) - Sh_{i} (1^{{{\text{Supp}} U\backslash j}} ,v) = Sh_{j} (1^{{{\text{Supp}} U}} ,v) - Sh_{j} (1^{{{\text{Supp}} U\backslash i}} ,v) $$

for any \({\text{Supp}} S \subseteq {\text{Supp}} U\) and all \(i,j \in {\text{Supp}} S\) with \(i \ne j\).

Therefore, we need to prove that

$$ \begin{gathered} \sum\limits_{l = 1}^{{q(U^{D} )}} {Sh_{i} (1^{{{\text{Supp}} U_{{h_{l} (U^{D} )}}^{D} }} ,v)\left( {h_{l} (U^{D} ) - h_{l - 1} (U^{D} )} \right)} - \sum\limits_{l = 1}^{{q(U^{D} )}} {Sh_{i} (1^{{{\text{Supp}} U_{{h_{l} (U^{D} )}}^{D} \backslash j}} ,v)\left( {h_{l} (U^{D} \backslash U^{D} (j)) - h_{l - 1} (U^{D} \backslash U^{D} (j))} \right)} \hfill \\ = \sum\limits_{l = 1}^{{q(U^{D} )}} {Sh_{j} (1^{{{\text{Supp}} U_{{h_{l} (U^{D} )}}^{D} }} ,v)\left( {h_{l} (U^{D} ) - h_{l - 1} (U^{D} )} \right)} - \sum\limits_{l = 1}^{{q(U^{D} )}} {Sh_{j} (1^{{{\text{Supp}} U_{{h_{l} (U^{D} )}}^{D} }} \backslash i,v)\left( {h_{l} (U^{D} \backslash U^{D} (i)) - h_{l - 1} (U^{D} \backslash U^{D} (i))} \right)} \hfill \\ \end{gathered} $$

for any \(S \subseteq U\) and all \(i,j \in {\text{Supp}} S\) with \(i \ne j\).

From Eq. (2), we know that

$$ \begin{gathered} \sum\limits_{l = 1}^{{q(U^{D} )}} {Sh_{i} (1^{{{\text{Supp}} U_{{h_{l} (U^{D} )}}^{D} }} ,v)\left( {h_{l} (U^{D} ) - h_{l - 1} (U^{D} )} \right)} - \sum\limits_{l = 1}^{{q(U^{D} )}} {Sh_{i} (1^{{{\text{Supp}} U_{{h_{l} (U^{D} )}}^{D} \backslash j}} ,v)\left( {h_{l} (U^{D} \backslash U^{D} (j)) - h_{l - 1} (U^{D} \backslash U^{D} (j))} \right)} \hfill \\ \quad = \sum\limits_{l = 1}^{{q(U^{D} )}} {\sum\limits_{{i \in {\text{Supp}} R \subseteq {\text{Supp}} U_{{h_{l} (U^{D} )}}^{D} }} {\frac{{(\left| {{\text{Supp}} R} \right| - 1)!(\left| {{\text{Supp}} U_{{h_{l} (U^{D} )}}^{D} } \right| - \left| {{\text{Supp}} R} \right|)!}}{{\left| {{\text{Supp}} U_{{h_{l} (U^{D} )}}^{D} } \right|!}}} (v(1^{{{\text{Supp}} R}} ) - v(1^{{{\text{Supp}} R\backslash i}} ))} \hfill \\ \quad - \sum\limits_{l = 1}^{{q(U^{D} )}} {\sum\limits_{{i \in {\text{Supp}} R \subseteq {\text{Supp}} U_{{h_{l} (U^{D} )}}^{D} \backslash j}} {\frac{{(\left| {{\text{Supp}} R} \right| - 1)!(\left| {{\text{Supp}} U_{{h_{l} (U^{D} )}}^{D} \backslash j} \right| - \left| {{\text{Supp}} R} \right|)!}}{{\left| {{\text{Supp}} U_{{h_{l} (U^{D} )}}^{D} \backslash j} \right|!}}} (v(1^{{{\text{Supp}} R}} ) - v(1^{{{\text{Supp}} R\backslash i}} ))} \hfill \\ \quad = \sum\limits_{l = 1}^{{q(U^{D} )}} {\sum\limits_{{i \in {\text{Supp}} R \subseteq {\text{Supp}} U_{{h_{l} (U^{D} )}}^{D} }} {\frac{{(\left| {{\text{Supp}} R} \right| - 1)!(\left| {{\text{Supp}} U_{{h_{l} (U^{D} )}}^{D} } \right| - \left| {{\text{Supp}} R} \right|)!}}{{\left| {{\text{Supp}} U_{{h_{l} (U^{D} )}}^{D} } \right|!}}} (v(1^{{{\text{Supp}} R}} ) - v(1^{{{\text{Supp}} R\backslash i}} ))} \hfill \\ \quad - \sum\limits_{l = 1}^{{q(U^{D} )}} {\sum\limits_{{i \in {\text{Supp}} R \subseteq {\text{Supp}} U_{{h_{l} (U^{D} )}}^{D} }} {\frac{{(\left| {{\text{Supp}} R} \right| - 1)!(\left| {{\text{Supp}} U_{{h_{l} (U^{D} )}}^{D} } \right| - \left| {{\text{Supp}} R} \right|)!}}{{\left| {{\text{Supp}} U_{{h_{l} (U^{D} )}}^{D} } \right|!}}} (v(1^{{{\text{Supp}} R\backslash j}} ) - v(1^{{{\text{Supp}} R\backslash \{ i,j\} }} ))} \hfill \\ \quad = \sum\limits_{l = 1}^{{q(U^{D} )}} {\sum\limits_{{i \in {\text{Supp}} R \subseteq {\text{Supp}} U_{{h_{l} (U^{D} )}}^{D} }} {\frac{{(\left| {{\text{Supp}} R} \right| - 1)!(\left| {{\text{Supp}} U_{{h_{l} (U^{D} )}}^{D} } \right| - \left| {{\text{Supp}} R} \right|)!}}{{\left| {{\text{Supp}} U_{{h_{l} (U^{D} )}}^{D} } \right|!}}} \left[ {v(1^{{{\text{Supp}} R}} ) - v(1^{{{\text{Supp}} R\backslash i}} )} \right.} \hfill \\ \quad - v(1^{{{\text{Supp}} R\backslash j}} ) + v(1^{{{\text{Supp}} R\backslash \{ i,j\} }} )] \hfill \\ \end{gathered} $$

As the above expression is symmetric for the players i and j, we can also derive the above conclusion for

$$ \sum\limits_{l = 1}^{{q(U^{D} )}} {Sh_{j} (1^{{{\text{Supp}} U_{{h_{l} (U^{D} )}}^{D} }} ,v)(h_{l} (U^{D} ) - } h_{l - 1} (U^{D} )) - \sum\limits_{l = 1}^{{q(U^{D} )}} {Sh_{j} (1^{{{\text{Supp}} U_{{h_{l} (U^{D} )}}^{D} \backslash i}} ,v)(h_{l} (U^{D} \backslash U^{D} (i)) - } h_{l - 1} (U^{D} \backslash U^{D} (i))) $$

Uniqueness. Let \(v^{D,C} \in DG_{C} (N)\) and \(U \in L(N)\). Assume that \(f^{D,C}\) is another solution that satisfies DFE and DFBC. If \(\left| {{\text{Supp}} U} \right|{ = }1\), by DFE, we have \(f_{i}^{D,C} (U,v^{D,C} ) = U(i)v(1^{{{\text{Supp}} U(i)}} ) = Sh_{i}^{D,C} (U,v^{D,C} )\). Assume that \(f^{D,C} = Sh^{D,C}\) with no more than \(\left| {{\text{Supp}} U} \right| = n - 1\) players, where \(n \ge 2\). Next, we prove \(f^{D,C} = Sh^{D,C}\), where \(\left| {{\text{Supp}} U} \right| = n\). By DFBC, we obtain

$$ f_{i}^{D,C} (U,v^{D,C} ) - f_{i}^{D,C} (U\backslash U(j),v^{D,C} ) = f_{j}^{D,C} (U,v^{D,C} ) - f_{j}^{D,C} (U\backslash U(i),v^{D,C} ) $$

for all \(i,j \in {\text{Supp}} U\) with \(i \ne j\).

By induction, we get

$$ f_{i}^{D,C} (U,v^{D,C} ) - f_{j}^{D,C} (U,v^{D,C} ) = Sh_{i}^{D,C} (U\backslash U(j),v^{D,C} ) - Sh_{j}^{D,C} (U\backslash U(i),v^{D,C} ) $$

Because \(Sh^{D,C}\) satisfies DFBC, we have

$$ f_{i}^{D,C} (U,v^{D,C} ) - f_{j}^{D,C} (U,v^{D,C} ) = Sh_{i}^{D,C} (U,v^{D,C} ) - Sh_{j}^{D,C} (U,v^{D,C} ) $$

Thus,

$$ f_{i}^{D,C} (U,v^{D,C} ) - Sh_{i}^{D,C} (U,v^{D,C} ) = f_{j}^{D,C} (U,v^{D,C} ) - Sh_{j}^{D,C} (U,v^{D,C} ) $$

Sum \(j \in {\text{Supp}} U\) for the above equation, we derive

$$ \begin{gathered} \left| {{\text{Supp}} U} \right|[f_{i}^{D,C} (U,v^{D,C} ) - Sh_{i}^{D,C} (U,v^{D,C} )] \hfill \\ \quad = \sum\limits_{{j \in {\text{Supp}} U}} {f_{j}^{D,C} (U,v^{D,C} )} - \sum\limits_{{j \in {\text{Supp}} U}} {Sh_{j}^{D,C} (U,v^{D,C} )} \hfill \\ \quad = v^{D,C} (U) - v^{D,C} (U) = 0 \hfill \\ \end{gathered} $$

Therefore, \(f_{i}^{D,C} (U,v^{D,C} ) = Sh_{i}^{D,C} (U,v^{D,C} )\) for any \(i \in {\text{Supp}} U\). □

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, J., Li, Z., Meng, F. et al. The Allocations for Dual Fuzzy Cooperative Games. Int. J. Fuzzy Syst. 26, 2191–2208 (2024). https://doi.org/10.1007/s40815-024-01723-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-024-01723-1

Keywords