Skip to main content

Advertisement

Log in

Guaranteed Cost Output Feedback Control for Nonlinear Systems via Networks with Adaptive Event-Triggered SCP and Hybrid Attacks

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper addresses the problem of guaranteed cost output feedback control for a class of networked interval type-2 Takagi–Sugeno (IT2 T-S) fuzzy systems with adaptive event-triggered stochastic communication protocol (AETSCP) scheduling and hybrid attacks. A novel AETSCP scheduling is designed to judge whether or not data are triggered as well as to determine which node transmits data to the controller. Meanwhile, the security problem of hybrid attacks with respect to denial-of-service (DoS) attacks and deception attacks on the system is considered. The quadratic boundedness (QB) technique is employed to depict the closed-loop stability of the concerned networked control systems (NCSs). Two adequate theorems are given based on Lyapunov stability theory for designing the observer-based and dynamic output feedback-based controllers, which guarantee the stability and robust performance of the required system. In the end, a simulation example of the mass-spring-damping system is provided to confirm the effectiveness of the presented control strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Algorithm 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Hespanha, J.P., Naghshtabrizi, P., Xu, Y.: A survey of recent results in networked control systems. Proc. IEEE. 95(1), 138–162 (2007)

    MATH  Google Scholar 

  2. Peng, C., Ma, S., Xie, X.: Observer-based non-PDC control for networked T-S fuzzy systems with an event-triggered communication. IEEE Trans. Cybern. 47(8), 2279–2287 (2017)

    MATH  Google Scholar 

  3. Zhang, K., Gharesifard, B., Braverman, E.: Event-triggered control for nonlinear time-delay systems. IEEE Trans. Autom. Control 67(2), 1031–1037 (2021)

    MathSciNet  MATH  Google Scholar 

  4. Zhu, L., Chen, Z., Hill, D.J., Du, S.: Event-triggered controllers based on the supremum norm of sampling-induced error. Automatica 128, 109532 (2021)

    MathSciNet  MATH  Google Scholar 

  5. Senthilkumar, K., Roy, A.K., Srinivasan, K.: Event triggered estimator based controller design for networked control system. ISA Trans. 126, 80–93 (2022)

    MATH  Google Scholar 

  6. Lin, N., Ling, Q.: Bit-rate conditions for the consensus of quantized multiagent systems based on event triggering. IEEE Trans. Cybern. 52(1), 116–127 (2020)

    MATH  Google Scholar 

  7. Wang, W., Wen, C., Huang, J., Zhou, J.: Adaptive consensus of uncertain nonlinear systems with event triggered communication and intermittent actuator faults. Automatica 111, 108667 (2020)

    MathSciNet  MATH  Google Scholar 

  8. Tang, X., Deng, L.: Multi-step output feedback predictive control for uncertain discrete-time T-S fuzzy system via event-triggered scheme. Automatica 107, 362–370 (2019)

    MathSciNet  MATH  Google Scholar 

  9. Xing, M., Deng, F.: Tracking control for stochastic multi-agent systems based on hybrid event-triggered mechanism. Asian J. Control 21(5), 2352–2363 (2019)

    MathSciNet  MATH  Google Scholar 

  10. Fei, Z., Guan, C., Gao, H.: Exponential synchronization of networked chaotic delayed neural network by a hybrid event trigger scheme. IEEE Trans. Neural Netw. Learn. Syst. 29(6), 2558–2567 (2017)

    MathSciNet  MATH  Google Scholar 

  11. Behera, A.K., Bandyopadhyay, B., Yu, X.: Periodic event-triggered sliding mode control. Automatica 96, 61–72 (2018)

    MathSciNet  MATH  Google Scholar 

  12. Li, F., Liu, Y.: Adaptive event-triggered output-feedback controller for uncertain nonlinear systems. Automatica 117, 109006 (2020)

    MathSciNet  MATH  Google Scholar 

  13. Chen, Z., Niu, B., Zhao, X., Zhang, L., Xu, N.: Model-based adaptive event-triggered control of nonlinear continuous-time systems. Appl. Math. Comput. 408, 126330 (2021)

    MathSciNet  MATH  Google Scholar 

  14. Tang, X., Li, Y., Yang, M., Wu, Y., Wen, Y.: Adaptive event-triggered model predictive load frequency control for power systems. IEEE Trans. Power Syst. 38(5), 4003–4014 (2023)

  15. Wang, P.B., Ren, X.M., Zheng, D.D.: Robust nonlinear MPC with variable prediction horizon: an adaptive event-triggered approach. IEEE Trans. Autom. Control (2022). https://doi.org/10.1109/tac.2022.3200967

    Article  MATH  Google Scholar 

  16. Tang, X., Su, X., Zhao, K., Qu, H., Cai, L.: Decay aggregation efficient output feedback MPC for networked interval type-2 T-S fuzzy systems with AET mechanism and deception attack. IEEE Trans. Fuzzy Syst. 3358352 (2024). https://doi.org/10.1109/tfuzz.2024.3358352.

  17. Li, X., Sun, Z., Tang, Y., Karimi, H.R.: Adaptive event-triggered consensus of multiagent systems on directed graphs. IEEE Trans. Autom. Control 66(4), 1670–1685 (2020)

    MathSciNet  MATH  Google Scholar 

  18. Mamduhi, M.H., Hirche, S.: Try-once-discard scheduling for stochastic networked control systems. Int. J. Control 92(11), 2532–2546 (2019)

    MathSciNet  MATH  Google Scholar 

  19. Wang, J., Song, Y., Wei, G.: Dynamic output-feedback RMPC for systems with polytopic uncertainties under Round-Robin protocol. J. Franklin Inst. 356(4), 2421–2439 (2019)

    MathSciNet  MATH  Google Scholar 

  20. Cheng, J., Park, J.H., Yan, H., Wu, Z.-G.: An event-triggered round-robin protocol to dynamic output feedback control for nonhomogeneous Markov switching systems. Automatica 145, 110525 (2020)

    MathSciNet  MATH  Google Scholar 

  21. Song, J., Wang, Z., Niu, Y.: On H-infinity sliding mode control under stochastic communication protocol. IEEE Trans. Autom. Control 64(5), 2174–2181 (2019)

    MATH  Google Scholar 

  22. Zhang, Z., Niu, Y., Cao, Z., Song, J.: Security sliding mode control of interval type-2 fuzzy systems subject to cyber attacks: the stochastic communication protocol case. IEEE Trans. Fuzzy Syst. 29(2), 240–251 (2020)

    MATH  Google Scholar 

  23. Wan, X., Wang, Z., Han, Q.-L., Wu, M.: A recursive approach to quantized \(H_\infty\) state estimation for genetic regulatory networks under stochastic communication protocols. IEEE Trans. Neural Netw. Learn. Syst. 30(9), 2840–2852 (2019)

    MathSciNet  MATH  Google Scholar 

  24. Ding, D., Wang, Z., Han, Q.L.: Neural-network-based output-feedback control with stochastic communication protocols. Automatica 106, 221–229 (2019)

    MathSciNet  MATH  Google Scholar 

  25. Cao, Z., Niu, Y., Karimi, H.R.: Dynamic output feedback sliding mode control for Markovian jump systems under stochastic communication protocol and its application. Int. J. Robust Nonlinear Control 30(17), 7307–7325 (2020)

    MathSciNet  MATH  Google Scholar 

  26. Sun, L., Zhang, Y., Sun, C.: Stochastic denial-of-service attack allocation in leader-following multiagent systems. IEEE Trans. Syst. Man Cybern. Syst. 52(5), 2848–2857 (2021)

    MATH  Google Scholar 

  27. Hu, Z., Deng, F., Su, Y., Zhang, J., Hu, S.: Security control of networked systems with deception attacks and packet dropouts: a discrete-time approach. J. Franklin Inst. 358(16), 8193–8206 (2021)

    MathSciNet  MATH  Google Scholar 

  28. Lu, A.Y., Yang, G.H.: Stability analysis for cyber-physical systems under denial-of-service attacks. IEEE Trans. Cybern. 51(11), 5304–5313 (2020)

    MATH  Google Scholar 

  29. Liu, J., Yin, T., Shen, M., Xie, X., Cao, J.: State estimation for cyber-physical systems with limited communication resources, sensor saturation and denial-of-service attacks. ISA Trans. 104, 101–114 (2020)

    Google Scholar 

  30. Du, D., Zhang, C., Wang, H., Li, X., Hu, H., Yang, T.: Stability analysis of token-based wireless networked control systems under deception attacks. Inform. Sci 459, 168–182 (2018)

    MathSciNet  MATH  Google Scholar 

  31. Zhao, L., Yang, G.H.: Cooperative adaptive fault-tolerant control for multi-agent systems with deception attacks. J. Franklin Inst. 357(6), 3419–3433 (2020)

    MathSciNet  MATH  Google Scholar 

  32. Li, Z., Zhao, J.: Resilient adaptive control of switched nonlinear cyber-physical systems under uncertain deception attacks. Inform. Sci. 543, 398–409 (2021)

    MathSciNet  MATH  Google Scholar 

  33. Liu, J., Zhang, N., Li, Y., Xie, X.: H\(\infty\) filter design for discrete-time networked systems with adaptive event-triggered mechanism and hybrid cyber attacks. J. Franklin Inst. 358(17), 9325–9345 (2021)

    MathSciNet  MATH  Google Scholar 

  34. Xi, Z., Feng, G., Hesketh, T.: Piecewise sliding-mode control for T-S fuzzy systems. IEEE Trans. Fuzzy Syst. 19(4), 707–716 (2011)

    MATH  Google Scholar 

  35. Li, Y., Liu, L., Feng, G.: Finite-time stabilization of a class of T-S fuzzy systems. IEEE Trans. Fuzzy Syst. 25(6), 1824–1829 (2016)

    MATH  Google Scholar 

  36. Su, X., Zhou, H., Song, Y.-D.: An optimal divisioning technique to stabilization synthesis of T-S fuzzy delayed systems. IEEE Trans. Cybern. 47(5), 1147–1156 (2016)

    MATH  Google Scholar 

  37. Wang, Y., Hua, C., Park, P.: A generalized reciprocally convex inequality on stability and stabilization for T-S fuzzy systems with time-varying delay. IEEE Trans. Fuzzy Syst. 31(3), 722–733 (2022)

    MATH  Google Scholar 

  38. Visakamoorthi, B., Muthukumar, P., Trinh, H.: Reachable set estimation for T-S fuzzy markov jump systems with time-varying delays via membership function dependent performance. IEEE Trans. Fuzzy Syst. 30(11), 4980–4990 (2022)

    MATH  Google Scholar 

  39. Zhang, Z., Niu, Y., Lam, H.-K.: Sliding-mode control of T-S fuzzy systems under weighted try-once-discard protocol. IEEE Trans. Cybern. 50(12), 4972–4982 (2019)

    MATH  Google Scholar 

  40. Tang, X., Deng, L., Liu, N., Yang, S., Yu, J.: Observer-based output feedback MPC for T-S fuzzy system with data loss and bounded disturbance. IEEE Trans. Cybern. 49(6), 2119–2132 (2018)

    MATH  Google Scholar 

  41. Liu, Y., Guo, B.. -Z., Park, J.. H., Lee, S.: Event-based reliable dissipative filtering for T-S fuzzy systems with asynchronous constraints. IEEE Trans. Fuzzy Syst. 26(4), 2089–2098 (2017)

    MATH  Google Scholar 

  42. Guo, X.-G., Fan, X., Ahn, C.K.: Adaptive event-triggered fault detection for interval type-2 T-S fuzzy systems with sensor saturation. IEEE Trans. Fuzzy Syst. 29(8), 2310–2321 (2020)

    MATH  Google Scholar 

  43. Tang, X., Deng, L., Qu, H.: Predictive control for networked interval type-2 T-S fuzzy system via an event-triggered dynamic output feedback scheme. IEEE Trans. Fuzzy Syst. 27(8), 1573–1586 (2018)

    MATH  Google Scholar 

  44. Alessandri, A., Baglietto, M., Battistelli, G.: On estimation error bounds for receding-horizon filters using quadratic boundedness. IEEE Trans. Autom. Control 49(8), 1350–1355 (2004)

    MathSciNet  MATH  Google Scholar 

  45. Ghaoui, L.E., Oustry, F., AitRami, M.: A cone complementarity linearization algorithm for static output-feedback and related problems. IEEE Trans. Autom. Control 42(8), 1171–1176 (1997)

    MathSciNet  MATH  Google Scholar 

  46. Castelan, E.B., Tarbouriech, S., Queinnec, I.: Control design for a class of nonlinear continuous-time systems. Automatica 44(8), 2034–2039 (2008)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 62073053 and Grant 61871061; in part by the Research Project of Chongqing Science and Technology Commission under Grant cstc2021jcyjmsxmX0315; in part by the Project of Advanced Scientific Research Institute of CQUPT under Grant E011A2022329; and in part by the science and technology planning project of Chongqing market supervision and Administration Bureau under Grant CQSJKJDW2023028, and in part by the National Administration for Market Regulation Science and Technology Program Project under Grant 2023MK104.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Tang.

Appendices

Appendix A

Proof

Consider the performance index function \(J_h^1={\mathcal {E}}\{ \sum _{h=0}^{\infty }(\Vert {\tilde{x}}_{h_t} \Vert _{{\mathscr {Q}}}^2+\Vert u_h \Vert _{{\mathscr {R}}}^2 ) \}\), where \({\mathscr {Q}}\) and \({\mathscr {R}}\) are positive-definite matrices of appropriate dimensions. For the closed-loop system (17), we construct the Lyapunov function \(V(\aleph _h^1)=\Vert \aleph _h^1 \Vert _{\digamma _1}^2+\epsilon _h\), where \(\digamma _1=\textrm{diag}\{ P_1,\varrho N_e,S_1,M_1 \}\). If NCS (17) is quadratically stable, then \({\mathcal {E}}\{V(\aleph _h^1)\}\ge 1 \Longrightarrow {\mathcal {E}}\{ V(\aleph _h^1) \}-{\mathcal {E}}\{ V(\aleph _{h+1}^1 \}\ge \frac{1}{\gamma }{\mathcal {E}}\{ \Vert {\tilde{x}}_{h_t} \Vert _{{\mathscr {Q}}}^2+\Vert u_h \Vert _{{\mathscr {R}}}^2 \}\) holds, where \(\gamma\) is the upper bound of \(J_h^1\). Since \(\Vert \xi _h \Vert _H^2\le 1\), by the S-procedure method, there exists a scalar \(\phi _1\in (0,1)\), which makes

$$\begin{aligned}&{\mathcal {E}}\{ V(\aleph _h^1) \}-{\mathcal {E}}\{ V(\aleph _{h+1}^1 \}-\frac{1}{\gamma }{\mathcal {E}}\{ \Vert {\tilde{x}}_{h_t} \Vert _{{\mathscr {Q}}}^2 + \Vert u_h \Vert _{{\mathscr {R}}}^2 \} \nonumber \\&\quad -\phi _1({\mathcal {E}}\{ V(\aleph _h^1) \}-\Vert \xi _h \Vert _H^2)\ge 0 \end{aligned}$$
(29)

Besides, by (3) and (4), it is possible to obtain the inequality

$$\begin{aligned} \Delta \epsilon _h=\epsilon _{h+1}-\epsilon _{h}\le \Vert {\hat{x}}_h+{\bar{e}}_h \Vert _{\Psi }^2-{\tilde{\epsilon }}\Vert {\bar{e}}_h \Vert _{\Psi }^2 \end{aligned}$$
(30)

Substituting (17) into (29), and combining (30), a new matrix inequality can be acquired by using the Schur complement. And then, since there is a non-convex optimization problem in this new matrix inequality, it can be handled by the cone complement linearization algorithm in Lemma 1, i.e., by making \(P^{-1}={\bar{P}}\), \(S^{-1}={\bar{S}}\), \(M^{-1}={\bar{M}}\), \(\Psi ^{-1}={\bar{\Psi }}\), such that \(P{\bar{P}}=I\), \(S{\bar{S}}=I\), \(M{\bar{M}}=I\), \(\Psi {\bar{\Psi }}=I\). Next, using a congruence transformation on the matrix inequality via \(\textrm{diag}\{ I,I,I,I,I,I,I,I,I,I,I,\varrho I,I,I,I,I,I,I,I,I,I,I,I \}\), (19) can be proved. Finally, we give the upper bound \(\gamma\) of \(J_h^1\) such that \(\gamma {\mathcal {E}}\{V(\aleph _0^1)\}\le \gamma\). Again using the Schur complement, (20) is confirmed. \(\square\)

Appendix B

Proof

Similarly, consider the performance index function \(J_h^2={\mathcal {E}}\{ \sum _{h=0}^{\infty }(\Vert {\tilde{y}}_{h_t} \Vert _{{\mathscr {Q}}}^2+\Vert u_h \Vert _{{\mathscr {R}}}^2 ) \}\). For the closed-loop system (23), we construct the Lyapunov function \(V(\aleph _h^2)=\Vert \aleph _h^2 \Vert _{\digamma _2}^2+\epsilon _h\), where \(\digamma _2=\textrm{diag}\{ P_2,S_2,M_2 \}\). If NCS (23) is quadratically stable, then there exists a scalar \(\phi _2\in (0,1)\) satisfying the following condition:

$$\begin{aligned}&{\mathcal {E}}\{ V(\aleph _h^2) \}-{\mathcal {E}}\{ V(\aleph _{h+1}^2) \}-\frac{1}{\gamma }{\mathcal {E}}\{ \Vert {\tilde{y}}_{h_t} \Vert _{{\mathscr {Q}}}^2 + \Vert u_h \Vert _{{\mathscr {R}}}^2 \} \nonumber \\&\quad -\phi _2({\mathcal {E}}\{ V(\aleph _h^2) \}-\Vert \xi _h \Vert _H^2)\ge 0 \end{aligned}$$
(31)

In addition, \(\Delta \epsilon _h \le \Vert y_h+{\bar{e}}_h \Vert _{\Psi }^2-{\tilde{\epsilon }}_h\Vert {\bar{e}}_h \Vert _{\Psi }^2\). By applying the Schur complement, the new matrix inequality is obtained. Define

$$\begin{aligned} P_2=\begin{bmatrix} W &{} X^\textrm{T} \\ X &{} R \end{bmatrix},\; P_2^{-1}=\begin{bmatrix} Y &{} K^\textrm{T} \\ K &{} G \end{bmatrix} \end{aligned}$$

with \(X=-W\). Make \({\mathcal {T}}_1=\begin{bmatrix} I &{} Y \\ 0 &{} K \end{bmatrix}\) and \({\mathcal {T}}_2=\begin{bmatrix} I &{} W \\ 0 &{} X \end{bmatrix}\). By pre- and post-multiplying \(\textrm{diag}\{{\mathcal {T}}_1^\textrm{T},I,I,I,I,I,{\mathcal {T}}_2^\textrm{T},I,I,I,I,I,I,I,I,I,I,I,I,I,I\}\) and its transpose for both the left and right sides of the matrix inequality, (25) is deduced. The rest of the proof procedure is similar to Appendix A. \(\square\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, X., Tang, X., Lv, X. et al. Guaranteed Cost Output Feedback Control for Nonlinear Systems via Networks with Adaptive Event-Triggered SCP and Hybrid Attacks. Int. J. Fuzzy Syst. 26, 2323–2336 (2024). https://doi.org/10.1007/s40815-024-01737-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-024-01737-9

Keywords