Skip to main content

Advertisement

Log in

Fuzzy Intermittent Control for Nonlinear PDE-ODE Coupled Systems

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper introduces a fuzzy intermittent control issue for nonlinear PDE-ODE coupled system under spatially point measurements (SPMs), which can be represented by an ordinary differential equation (ODE) and a partial differential equation (PDE). Firstly, the nonlinear coupled system is aptly characterized by the Takagi–Sugeno (T–S) fuzzy PDE-ODE coupled model. Subsequently, based on T–S fuzzy model, a novel Lyapunov function (LF) is provided to design a fuzzy intermittent controller ensuring exponential stability of the closed-loop coupled system. The stabilization conditions are presented by means of a group of space-dependent linear matrix inequalities (SDLMIs). Finally, simulation results are given to illustrate the effectiveness of the proposed design method in the control of a hypersonic rocket car (HRC).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Zhao, X.W., Weiss, G.: Controllability and observability of a well-posed system coupled with a finite-dimensional system. IEEE Trans. Autom. Control 56(1), 88–99 (2011)

    MathSciNet  MATH  Google Scholar 

  2. Lattanzio, C., Maurizi, A., Piccoli, B.: Moving bottlenecks in car traffic flow: a PDE-ODE coupled model. SIAM J. Math. Anal. 43(1), 50–67 (2011)

    MathSciNet  MATH  Google Scholar 

  3. Gleeson, M.R., Guo, J.X., Sheridan, J.T.: Optimisation of photopolymers for holographic applications using the non-local photopolymerization driven diffusion model. SIAM J. Math. Anal. 43(1), 50–67 (2011)

    MathSciNet  MATH  Google Scholar 

  4. Panjapornpon, C., Limpanachaipornkul, P., Charinpanitkul, T.: Control of coupled PDEs-ODEs using input-output linearization: application to cracking furnace. Chem. Eng. Sci. 75, 144–151 (2012)

    MATH  Google Scholar 

  5. Diehl, S., Faras, S.: Control of an ideal activated sludge process in wastewater treatment via an ODE-PDE model. J. Process Control 23(3), 359–381 (2013)

    MATH  Google Scholar 

  6. Fridman, E.: A refined input delay approach to sampled-data control. Automatica 46(8), 421–427 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Zhu, X.-L., Chen, B., Yue, D., Wang, Y.: An improved input delay approach to stabilization of fuzzy systems under variable sampling. IEEE Trans. Fuzzy Syst. 20(2), 330–341 (2012)

    MATH  Google Scholar 

  8. Wu, H.-N., Li, H.-X.: Finite-dimensional constrained fuzzy control for a class of nonlinear distributed process systems. IEEE Trans. Syst. Man Cybern. Part B 37(5), 1422–1430 (2007)

    MATH  Google Scholar 

  9. Chen, B.-S., Chang, Y.-T.: Fuzzy state-space modeling and robust observer-based control design for nonlinear partial differential systems. IEEE Trans. Fuzzy Syst. 17(5), 1025–1043 (2009)

    MATH  Google Scholar 

  10. Wu, H.-N., Wang, J.-W., Li, H.-X.: Exponential stabilization for a class of nonlinear parabolic PDE systems via fuzzy control approach. IEEE Trans. Fuzzy Syst. 20(2), 318–329 (2011)

    MATH  Google Scholar 

  11. Su, X.-J., Shi, P., Wu, L.-G., Song, Y.-D.: A novel control design on discrete-time Takagi-Sugeno fuzzy systems with time-varying delays. IEEE Trans. Fuzzy Syst. 21(4), 655–671 (2012)

    MATH  Google Scholar 

  12. Zhou, N., Liu, Y.-J., Tong, S.-C.: Adaptive fuzzy output feedback control of uncertain nonlinear systems with nonsymmetric dead-zone input. Nonlinear Dyn. 63, 771–778 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Dong, J.-X., Yang, G.-H., Zhang, H.-G.: Stability analysis of T-S fuzzy control systems by using set theory. IEEE Trans. Fuzzy Syst. 23(4), 827–841 (2014)

    MATH  Google Scholar 

  14. Zhang, H.-G., Zhang, J.-L., Yang, G.-H., Luo, Y.-H.: Leader-based optimal coordination control for the consensus problem of multiagent differential games via fuzzy adaptive dynamic programming. IEEE Trans. Fuzzy Syst. 23(1), 152–163 (2014)

    MATH  Google Scholar 

  15. Chen, P., Ma, S.-D., Xie, X.-P.: Observer-based non-PDC control for networked T-S fuzzy systems with an event-triggered communication. IEEE Trans. Cybern. 47(8), 2279–2287 (2017)

    MATH  Google Scholar 

  16. Wang, J.-W., Wu, H.-N., Li, H.-X.: Distributed fuzzy control design of nonlinear hyperbolic PDE systems with application to nonisothermal plug-flow reactor. IEEE Trans. Fuzzy Syst. 19(3), 514–526 (2011)

    MATH  Google Scholar 

  17. Qiu, J.-B., Ding, S.-X., Gao, H.-J., Yin, S.: Fuzzy-model-based reliable static output feedback \(\mathscr {H} _ {\infty }\) control of nonlinear hyperbolic PDE systems. IEEE Trans. Fuzzy Syst. 24(2), 388–400 (2015)

    MATH  Google Scholar 

  18. Wang, Z.-P., Wu, H.-N., Li, H.-X.: Estimator-based \(H_\infty \) sampled-data fuzzy control for nonlinear parabolic PDE systems. IEEE Trans. Syst. Man Cybern. 50(7), 2491–2500 (2018)

    MATH  Google Scholar 

  19. Zhang, X., Wang, Z.-P., Wu, H.-N., Zhang, X.-W., Li, H.-X., Qiao, J.-F.: Robust non-fragile \(H_\infty \) fuzzy control for uncertain nonlinear-delayed hyperbolic PDE systems. Int. J. Fuzzy Syst. 25, 851–867 (2023)

    MATH  Google Scholar 

  20. Wang, Z.-P., Wu, H.-N.: Fuzzy control for nonlinear time-delay distributed parameter systems under spatially point measurements. IEEE Trans. Fuzzy Syst. 27(9), 1844–1852 (2019)

    MATH  Google Scholar 

  21. Fridman, E., Blighovsky, A.: Robust sampled-data control of a class of semilinear parabolic systems. Automatica 48(5), 826–836 (2012)

    MathSciNet  MATH  Google Scholar 

  22. Chen, W.-H., Luo, S., Zheng, W.-X.: Sampled-data distributed \(H_\infty \) control of a class of 1-D parabolic systems under spatially point measurements. J. Franklin Inst. 354(1), 197–214 (2017)

    MathSciNet  MATH  Google Scholar 

  23. Zhu, H.-Y., Wu, H.-N., Wang, J.-W.: Fuzzy control with guaranteed cost for nonlinear coupled parabolic PDE-ODE systems via PDE static output feedback and ODE state feedback. IEEE Trans. Fuzzy Syst. 26(4), 1844–1853 (2017)

    MATH  Google Scholar 

  24. Wang, Z.-P., Wu, H.-N., Li, H.-X.: Sampled-data fuzzy control for nonlinear coupled parabolic PDE-ODE systems. IEEE Trans. Cybern. 47(9), 2603–2615 (2017)

    MATH  Google Scholar 

  25. Zhang, R.-M., Wang, H.-X., Park, J.H., He, P.-S., Zeng, D.-Q., Xie, X.-P.: Fuzzy secure control for nonlinear \(N\)-D parabolic PDE-ODE coupled systems under stochastic deception attacks. IEEE Trans. Fuzzy Syst. 30(8), 3347–3359 (2021)

    MATH  Google Scholar 

  26. Li, C., Feng, G., Liao, X.: Stabilization of nonlinear systems via periodically intermittent control. IEEE Trans. Circ. Syst. II 54(11), 1019–1023 (2007)

    MATH  Google Scholar 

  27. Chen, W.-H., Liu, L., Lu, X.: Intermittent synchronization of reaction-diffusion neural networks with mixed delays via Razumikhin technique. Nonlinear Dyn. 87, 535–551 (2017)

    MATH  Google Scholar 

  28. Gan, Q.: Exponential synchronization of stochastic fuzzy cellular neural networks with reaction-diffusion terms via periodically intermittent control. Neural Process. Lett. 37(3), 393–410 (2013)

    MATH  Google Scholar 

  29. Yang, Y., He, Y.: Non-fragile observer-based robust control for uncertain systems via aperiodically intermittent control. Inf. Sci. 573, 239–261 (2021)

    MathSciNet  MATH  Google Scholar 

  30. Yang, F., Mei, J., Wu, Z.: Finite-time synchronisation of neural networks with discrete and distributed delays via periodically intermittent memory feedback control. IET Control Theory Appl. 10(14), 1630–1640 (2016)

    MathSciNet  MATH  Google Scholar 

  31. Liu, X., Chen, Z., Zhou, L.: Synchronization of coupled reaction-diffusion neural networks with hybrid coupling via aperiodically intermittent pinning control. J. Franklin Inst. 354(15), 7053–7076 (2017)

    MathSciNet  MATH  Google Scholar 

  32. Chen, W.-H., Zhong, J.-C., Zheng, W.-X.: Delay-independent stabilization of a class of time-delay systems via periodically intermittent control. Automatica 71, 89–97 (2016)

    MathSciNet  MATH  Google Scholar 

  33. Liu, A., Huang, X., Fan, Y.-J., Wang, Z.: A control-interval-dependent functional for exponential stabilization of neural networks via intermittent sampled-data control. Appl. Math. Comput. 411, 126494 (2021)

    MathSciNet  MATH  Google Scholar 

  34. Jiang, Y.: Intermittent distributed control for a class of nonlinear reaction-diffusion systems with spatial point measurements. J. Franklin Inst. 356(7), 3811–3830 (2019)

    MathSciNet  MATH  Google Scholar 

  35. Liu, X.-Z., Wu, K.-N., Li, Z.-T.: Exponential stabilization of reaction-diffusion systems via intermittent boundary control. IEEE Trans. Autom. Control 67(6), 3036–3042 (2021)

    MathSciNet  MATH  Google Scholar 

  36. Ding, K., Zhu, Q.-X.: Fuzzy intermittent extended dissipative control for delayed distributed parameter systems with stochastic disturbance: a spatial point sampling approach. IEEE Trans. Fuzzy Syst. 30(6), 1734–1749 (2021)

    MATH  Google Scholar 

  37. Wang, J.-W., Wu, H.-N.: Some extended wirtinger’s inequalities and distributed proportional-spatial integral control of distributed parameter systems with multi-time delays. J. Franklin Inst. 352(10), 4423–4445 (2015)

    MathSciNet  MATH  Google Scholar 

  38. Chen, W.H., Zheng, W.X.: Robust stabilization of delayed markovian jump systems subject to parametric uncertainties. In: Proceedings of the 46th IEEE Conference on Decision and Control, pp. 3054–3059 (2007)

  39. Tuan, H.-D., Apkarian, P., Narikiyo, T., Yamamoto, Y.: Parameterized linear matrix inequality techniques in fuzzy control system design. IEEE Trans. Fuzzy Syst. 9(2), 324–332 (2001)

    MATH  Google Scholar 

  40. Wu, H.-N., Wang, J.-W., Li, H.-X.: Design of distributed \(H_\infty \) fuzzy controllers with constraint for nonlinear hyperbolic PDE systems. Automatica 48(10), 2535–2543 (2012)

    MathSciNet  MATH  Google Scholar 

  41. Gahinet, P., Nemirovski, A., Laub, A.J., Chilali, M.: LMI Control Toolbox. MathWorks Inc, Natick (1995)

    MATH  Google Scholar 

  42. Wang, Z.P., Li, Q.Q., Qiao, J.F., Wu, H.N., Huang, T.W.: Fuzzy boundary sampled-Data control for nonlinear parabolic DPSs. IEEE Trans. Cybern. (2023). https://doi.org/10.1109/TCYB.2023.3312135

    Article  MATH  Google Scholar 

  43. Wang, Z.-P., Wu, H.-N.: On fuzzy sampled-data control of chaotic systems via a time-dependent Lyapunov functional approach. IEEE Trans. Cybern. 45(4), 819–829 (2015)

    MATH  Google Scholar 

  44. Dalle, D.J., Torrez, S.M., Driscoll, J.F., Bolender, M.A., Bowcutt, K.G.: Minimum-fuel ascent of a hypersonic vehicle using surrogate optimization. J. Aircr. 51(6), 1973–1986 (2014)

    Google Scholar 

  45. Pao, C.V., Ruan, W.-H.: Positive solutions of quasilinear parabolic systems with nonlinear boundary conditions. J. Math. Anal. Appl. 333(1), 472–499 (2007)

    MathSciNet  MATH  Google Scholar 

  46. Pesch, H.J., Rund, A., Wahl, W.V., Wendl, S.: On some new phenomena in state constrained optimal control if ODEs as well as PDEs are involved. Control. Cybern. 39(3), 647–660 (2010)

    MathSciNet  MATH  Google Scholar 

  47. Qi, W.-H., Yang, X., Park, J.H., Cao, J.-D., Chen, J.: Fuzzy SMC for quantized nonlinear stochastic switching systems with semi-Markovian process and application. IEEE Trans. Cybern. 52(9), 9316–9325 (2021)

    MATH  Google Scholar 

  48. Qi, W.-H., Zhang, N., Park, J.H., Lam, H.K., Cheng, J.: Protocol-based SMC for interval type-2 fuzzy semi-markovian jumping systems with channel fading. IEEE Trans. Fuzzy Syst. 31(11), 3775–3786 (2023)

    MATH  Google Scholar 

Download references

Funding

Funding was provided by National Key Research and Development Program of China (Grant nos. 2023YFB3307300 and 2021ZD0112300), National Natural Science Foundations of China (Grant nos. 61890930-5, 62021003, 62073011, 62203326, and 61973135), China Postdoctoral Science Foundation (Grant no. 2022M720322), Beijing Postdoctoral Science Foundation, Shandong Provincial Natural Science Foundation (Grant no. ZR2021MF004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zi-Peng Wang.

Ethics declarations

Conflict of interest

The authors declare no potential conflict of interests.

Appendices

Appendix 1

Proof of Theorem 1

It follows from (18) and (19) that

$$\begin{aligned} \Xi _{1vm}^{wn}(z,t)< & {} 0\end{aligned}$$
(40)
$$\begin{aligned} \Xi _{2}^{vw}(z,t)< & {} 0 \end{aligned},$$
(41)

in which

$$\begin{aligned} \Xi _{1vm}^{wn}(z,t)= \,& {} \left[ \begin{array}{cccc}\Phi _{1}^{vm}(t)&{} \Phi _{1}^{v}(z,t)&{} 0 &{}0\\ * &{}\Phi _{1}^{wn}(z,t)&{}0 &{}\Phi _{1}^{n}(z,t)\\ * &{} * &{}\Phi _{1}(z,t) &{} 0\\ *&{}*&{}*&{}-\frac{\pi ^{2}}{\Delta _s^{2}}\Gamma (t)\\ \end{array} \right] \\ \Xi _{2}^{vw}(z,t)= \,& {} \left[ \begin{array}{cccc}\Phi _{2}^{v}(t) &{}\Phi _{2}^{v}(z,t) &{}0 \\ * &{}\Phi _{2}^{w}(z,t)&{}0 \\ * &{} * &{}\Phi _{2}(z,t) \\ \end{array} \right] \end{aligned},$$

where

$$\begin{aligned} \Phi _{1}^{vm}(t)= \,& {} \frac{1}{l_2-l_1}[P_1(t)(\theta _1(t)+2\xi )+\rho _{10}(t)(P_{11}-P_{12}) \\{} & {} +P_1(t)A_{1v}+A_{1v}^{T}P_1(t)+P_1(t)B_{1v}K_m\\{} & {} +(B_{1v}K_m)^{T}P_1(t)]\\ \Phi _{2}^{v}(t)= \,& {} \frac{1}{l_2-l_1}[P_2(t)(\theta _2(t)+2\xi )+\rho _{20}(t)(P_{21}-P_{22})\\{} & {} +P_2(t)A_{1v}+A_{1v}^{T}P_2(t)]\\ \Phi _{1}^{v}(z,t)= \,& {} P_1(t)G_{1v}+G_{2v}^{T}(z)Q_1(t)\\ \Phi _{2}^{v}(z,t)= \,& {} P_2(t)G_{1v}+G_{2v}^{T}(z)Q_2(t)\\ \Phi _{1}^{wn}(z,t)= \,& {} Q_1(t)(\theta _1(t)+2\xi )+\rho _{10}(t)(Q_{11}-Q_{12})\\{} & {} +Q_1(t)A_{2w}(z)+A_{2w}^{T}(z)Q_1(t)\\{} & {} +Q_1(t)B_{u_2}(z)W_{ns}+(B_{u_2}(z)W_{ns})^{T}Q_1(t)\\{} & {} -\frac{\pi ^{2}}{(l_2-l_1)^{2}}U_1(t)\\ \Phi _{2}^{w}(z,t)= \,& {} Q_2(t)(\theta _2(t)+2\xi )+\rho _{20}(t)(Q_{21}-Q_{22})\\{} & {} +Q_2(t)A_{2w}(z)+A_{2w}^{T}(z)Q_2(t)\\{} & {} -\frac{\pi ^{2}}{(l_2-l_1)^{2}}U_2(t)\\ \Phi _{1}^{n}(z,t)= \,& {} Q_1(t)B_{u_2}(z)W_{ns}\\ \Phi _{1}(z,t)= \,& {} -Q_1(t)\Upsilon (z)-\Upsilon ^{T}(z)Q_1(t)+U_1(t) \\ \Phi _{2}(z,t)= \,& {} -Q_2(t)\Upsilon (z)-\Upsilon ^{T}(z)Q_2(t)+U_2(t). \end{aligned}$$

Next, the stability analysis is made for the fuzzy coupled system (13) via a novel LF. To this end, a novel LF candidate is introduced as follows:

$$\begin{aligned} V(t)=V_1(t)+V_2(t) \end{aligned},$$
(42)

in which

$$\begin{aligned} V_1(t)= \,& {} \eta _{\sigma (t)}(t)x^{T}(t)P_{\sigma (t)}(t)x(t) \\ V_2(t)= \,& {} \eta _{\sigma (t)}(t)\int _\Omega T^{T}(z,t)Q_{\sigma (t)}(t)T(z,t)dz \end{aligned}$$

where \(\eta _h(t)=\psi _h(t)e^{2\xi (t-t_0)}\), \(\psi _h(t)=\mu _h^{\rho _{h1}(t)}\), \(h\in \overline{1,2}\). \(P_h(t)=\sum \limits _{i=1}^{2}\rho _{hi}(t)P_{hi}\), \(Q_h(t)=\sum \limits _{i=1}^{2}\rho _{hi}(t)Q_{hi}\), \(\theta _1(t)=\rho _{10}(t)\ln \mu _1\), and \(\theta _2(t)=\rho _{20}(t)\ln \mu _2\).

For \(t\in J _{1,k}\) with any given \(k\in \mathbb {N}_0\), taking the derivative of V(t) with respect to time along the trajectory of (13a) yields

$$\begin{aligned} \dot{V}_1(t)= \,& {} \eta _1(t)x^{T}(t)\{P_1(t)(\theta _1(t)+2\xi )+\rho _{10}(t)(P_{11}\nonumber \\{} & {} -P_{12})\}x(t)+2\eta _1(t)\sum \limits _{v=1}^{r_1}\sum \limits _{m=1}^{r_1}\varrho _v(\theta (t))\varrho _m(\theta (t))\nonumber \\{} & {} \times x^{T}(t)P_1(t)\{A_{1v}x(t)+B_{1v}K_mx(t)\nonumber \\{} & {} +G_{1v}\int _\Omega {T(z,t)}dz\}. \end{aligned}$$
(43)

Denote \(\kappa (z,t)\triangleq T(\overline{z}_s, t)-T(z, t)\). Then, we have \(y_s(t)=T(z, t)+\kappa (z,t)\). Using (13b) gives the following relationship:

$$\begin{aligned} \dot{V}_2(t)= \,& {} \eta _1(t)\int _\Omega T^{T}(z,t)\{Q_1(t)(\theta _1(t)+2\xi )\nonumber \\{} \,& {} +\rho _{10}(t)(Q_{11}-Q_{12})\}T(z,t)dz\nonumber \\{} & {} +2\eta _1(t)\int _\Omega T^{T}(z,t)Q_1(t)T_{t}(z,t)dz\nonumber \\= \,& {} \eta _1(t)\int _\Omega T^{T}(z,t)\{Q_1(t)(\theta _1(t)+2\xi )\nonumber \\{} \,& {} +\rho _{10}(t)(Q_{11}-Q_{12})\}T(z,t)dz\nonumber \\{} & {} +2\eta _1(t)\int _\Omega \sum \limits _{v=1}^{r_1}\sum \limits _{w=1}^{r_2} \sum \limits _{n=1}^{r_2}\varrho _v(\theta (t))\varpi _w(\vartheta (z,t))\nonumber \\{} & {} \times \varpi _n(\vartheta (\bar{z}_s,t))T^{T}(z,t)Q_1(t)\{(A_{2w}(z)\nonumber \\{} & {} +B_{u_2}(z)W_{ns})T(z,t)+G_{2v}(z)x(t)\nonumber \\{} & {} +B_{u_2}(z)W_{ns}\kappa (z, t)\}dz\nonumber \\{} & {} +2\eta _1(t)\int _\Omega T^{T}(z,t)Q_1(t)\{\Upsilon (z)T_{z}(z,t)\}_zdz. \end{aligned}$$
(44)

Then, utilizing the boundary conditions (2), for any matrix \(U_1(t)=\sum \limits _{i=1}^{2}\sum \limits _{l=1}^{2}\rho _{1i}(t)\zeta _{1l}(t)U_{1il}>0\), one has from Lemma 1 that

$$\begin{aligned}{} \,& {} 2\int _\Omega T^{T}(z,t)Q_1(t)\{\Upsilon (z)T_{z}(z,t)\}_zdz\nonumber \\= \,& {} -2\int _\Omega T_{z}^{T}(z,t)Q_1(t)\Upsilon (z)T_{z}(z,t)dz\nonumber \\\le & {} -\int _\Omega T_{z}^{T}(z,t)\{Q_1(t)\Upsilon (z)+\Upsilon ^{T}(z)Q_1(t)\nonumber \\{} & {} -U_1(t)\}T_{z}(z,t)dz\nonumber \\{} & {} -\frac{\pi ^{2}}{(l_2-l_1)^{2}}\int _\Omega T^{T}(z,t)U_1(t)T(z,t)dz. \end{aligned}$$
(45)

Considering \(\kappa ^{2}_z(z,t)=T^{2}_z(z,t)\), for any matrix \(\Gamma (t)=\sum \limits _{i=1}^{2}\sum \limits _{l=1}^{2} \rho _{1i}(t)\zeta _{1l}(t)\Gamma _{1il}>0\), one can get from Lemma 2 that

$$\begin{aligned}{} & {} -\frac{\pi ^{2}}{\Delta _s^{2}}\int _{z_s}^{z_{s+1}}\kappa ^{T}(z,t)\Gamma (t)\kappa (z, t)dz\nonumber \\= \,& {} -\frac{\pi ^{2}}{\Delta _s^{2}}\int _{z_s}^{\overline{z}_{s}}\kappa ^{T}(z, t)\Gamma (t)\kappa (z,t)dz\nonumber \\{} & {} -\frac{\pi ^{2}}{\Delta _s^{2}}\int _{\overline{z}_s}^{z_{s+1}}\kappa ^{T}(z, t)\Gamma (t)\kappa (z,t)dz\nonumber \\\le & {} -\int _{z_s}^{z_{s+1}}\kappa ^{T}_{z}(z, t)\Gamma (t)\kappa _{z}(z,t)dz\nonumber \\= \,& {} -\int _{z_s}^{z_{s+1}}T_z(z,t)\Gamma (t) T_z(z,t)dz. \end{aligned}$$
(46)

Using (40) and (43)–(46), we obtain

$$\begin{aligned} \dot{V}(t)\le & {} \eta _1(t)\sum \limits _{s=0}^{c-1} \int _{z_{s}}^{z_{s+1}}\sum \limits _{v=1}^{r_1}\sum \limits _{m=1}^{r_1}\sum \limits _{w=1}^{r_2} \sum \limits _{n=1}^{r_2}\varrho _v(\theta (t))\\{} & {} \times \varrho _m(\theta (t))\varpi _w(\vartheta (z,t))\varpi _n(\vartheta (\bar{z}_s,t))\varphi _1^{T}(z,t)\\{} & {} \times \Xi _{1vm}^{wn}(z,t)\varphi _1(z,t)dz<0, t\in J _{1,k} \end{aligned}$$

where \(\varphi _1(z,t)=[x^{T}(t) \ T^{T}(z,t) \ T_z^{T}(z,t) \ \kappa ^{T}(z, t)]^{T}\). It follows that

$$\begin{aligned} V(t)\le V(t_k),t\in {J}_{1,k}, k\in \mathbb {N}_0. \end{aligned}$$
(47)

For \(t\in J _{2,k}, k\in \mathbb {N}_0\), taking the derivative of V(t) with respect to time along the trajectory of (13b) yields

$$\begin{aligned} \dot{V}_1(t)= \,& {} \eta _2(t)x^{T}(t)\{P_2(t)(\theta _2(t)+2\xi )+\rho _{20}(t)\nonumber \\{} & {} \times (P_{21}-P_{22})\}x(t)+2\eta _2(t)\sum \limits _{v=1}^{r_1}\varrho _v(\theta (t))\nonumber \\{} & {} \times x^{T}(t)P_2(t)\{A_{1v}x(t)+G_{1v}\int _\Omega {T(z,t)}dz\}\end{aligned}$$
(48)
$$\begin{aligned} \dot{V}_2(t)= \,& {} \eta _2(t)\int _\Omega T^{T}(z,t)\{Q_2(t)(\theta _2(t)+2\xi )\nonumber \\{} & {} +\rho _{20}(t)(Q_{21}-Q_{22})\}T(z,t)dz\nonumber \\{} & {} +2\eta _2(t)\int _\Omega T^{T}(z,t)Q_2T_{t}(z,t)dz\nonumber \\= \,& {} \eta _2(t)\int _\Omega T^{T}(z,t)\{Q_2(t)(\theta _2(t)+2\xi )+\rho _{20}(t)\nonumber \\{} & {} \times (Q_{21}-Q_{22})\}T(z,t)dz+2\eta _2(t)\int _\Omega \sum \limits _{v=1}^{r_1} \sum \limits _{w=1}^{r_2}\nonumber \\{} & {} \times \varrho _v(\theta (t))\varpi _w(\vartheta (z,t))T^{T}(z,t)Q_2(t)\nonumber \\{} & {} \times \{A_{2w}(z)T(z,t)+G_{2v}(z)x(t)\}dz\nonumber \\{} & {} +2\eta _2(t)\int _\Omega T^{T}(z,t)Q_2(t)\nonumber \\{} & {} \times \{\Upsilon (z)T_{z}(z,t)\}_zdz. \end{aligned}$$
(49)

Then, utilizing the boundary conditions (2), for any matrix \(U_2(t)=\sum \limits _{i=1}^{2}\sum \limits _{l=1}^{2}\rho _{2i}(t)\zeta _{2l}(t)U_{2il}>0\), one has from Lemma 1 that

$$\begin{aligned}{} & {} 2\int _\Omega T^{T}(z,t)Q_2(t)\{\Upsilon (z)T_{z}(z,t)\}_zdz\nonumber \\= \,& {} -2\int _\Omega T_{z}^{T}(z,t)Q_2(t)\Upsilon (z)T_{z}(z,t)dz\nonumber \\\le & {} -\int _\Omega T_{z}^{T}(z,t)\{Q_2(t)\Upsilon (z)+\Upsilon ^{T}(z)Q_2(t)\nonumber \\{} & {} -U_2(t)\}T_{z}(z,t)dz\nonumber \\{} & {} -\frac{\pi ^{2}}{(l_2-l_1)^{2}}\int _\Omega T^{T}(z,t)U_2(t)T(z,t)dz. \end{aligned}$$
(50)

Using (41) and (48)–(50), we obtain

$$\begin{aligned} \dot{V}(t)\le & {} \eta _2(t)\int _\Omega \sum \limits _{v=1}^{r_1}\sum \limits _{w=1}^{r_2}\varrho _v(\theta (t))\varpi _w(\vartheta (z,t))\\{} & {} \times \varphi _2^{T}(z,t)\Xi _{2}^{vw}(z,t)\varphi _2(z,t)dz<0,t\in J _{2,k} \end{aligned}$$

where \(\varphi _2(z,t)=[x(t) \ T(z,t) \ T_z(z,t)]^{T}\). It follows that

$$\begin{aligned} V(t)\le V(s_k), t\in J _{2,k}, k\in \mathbb {N}_0. \end{aligned}.$$
(51)

Estimate V(t) at the switching instants \(t_k\) and \(s_k\), \(k\in \mathbb {N}_0\). From the definitions of \(P_h(t)\) and \(\psi _h(t)\), \(h\in \overline{1,2}\), one has

$$\begin{aligned} P_1(t_k)= \,& {} P_{12}, P_2(t_k^{-})=P_{21}, Q_1(t_k)=Q_{12}\\ Q_2(t_k^{-})= \,& {} Q_{21}, \psi _1(t_k)=1,\psi _2(t_k^{-})=\mu _2\\ P_1(s_k^{-})\,&=&P_{11}, P_2(s_k)=P_{22}, Q_1(s_k^{-})=Q_{11}\\ Q_2(s_k)= \,& {} Q_{22}, \psi _1(s_k^{-})=\mu _1,\psi _2(s_k)=1. \end{aligned}$$

Then, according to [32] and [34], for any \(k\in \mathbb {N}_0\), one obtains from (16) and (17):

$$\begin{aligned} V(t_k)= \,& {} e^{2\xi (t_k-t_0)}\{x^{T}(t_k)P_{12}x(t_k) \nonumber \\{} & {} +\int _\Omega T^{T}(z,t_k)Q_{12}T(z, t_k)dz\}\nonumber \\\le & {} e^{2\xi (t_k-t_0)}\{\mu _2 x^{T}(t_k)P_{21}x(t_k)\nonumber \\{} & {} +\mu _2\int _\Omega T^{T}(z,t_k)Q_{21}T(z,t_k)dz\}\nonumber \\= \,& {} V(t_k^{-})\end{aligned}$$
(52)
$$\begin{aligned} V(s_k)= \,& {} e^{2\xi (s_k-t_0)} \{x^{T}(s_k)P_{22}x(s_k)\nonumber \\{} & {} +\int _\Omega T^{T}(z,s_k)Q_{22}T(z,s_k)dz\}\nonumber \\\le & {} e^{2\xi (s_k-t_0)}\{\mu _1 x^{T}(s_k)P_{11}x(s_k)\nonumber \\{} & {} +\mu _1\int _\Omega T^{T}(z,s_k)Q_{11}T(z,s_k)\}dz\nonumber \\= \,& {} V(s_k^{-}). \end{aligned}$$
(53)

By jointly applying equations (47), (51), (52), and (53), one can obtain \(V(t)\le V(t_0), t\ge t_0\). Thus, we conclude that \(\Vert x(t)\Vert _2+\Vert T(\cdot ,t)\Vert _2\le \sqrt{\frac{M\lambda _1}{\lambda _0}}(\Vert x(t_0)\Vert _2+\Vert T(\cdot , t_0)\Vert _2)e^{-\xi (t-t_0)}\), \( \text{where}\,M=\max \{1, \mu _1, \mu _2\}\), \(\lambda _1=\max \{\lambda _{\max }(P_i), i\in \overline{1,2}\}\), and \(\lambda _0=\min \{\lambda _{\min }(P_i), i\in \overline{1,2}\}\). Therefore, the nonlinear closed-loop coupled system (13) is exponential stable over \(S_\sigma (\delta _{11}, \delta _{12}; \delta _{21}, \delta _{22})\).

Appendix 2

Proof of Theorem 2

Define \(P_{hi}=X_{hi}^{-1}, Q_{hi}=Y_{hi}^{-1}, K_m=\bar{K}_mX_{0}^{-1},\) \(W_{ns}=\bar{W}_{ns}Y_{0}^{-1},\) \(U_{1il}=Y_{1i}^{-1}\bar{U}_{1il}Y_{1i}^{-1}, U_{2il}=Y_{2i}^{-1}\bar{U}_{2il}Y_{2i}^{-1},\) \(\Gamma _{1il}=Y_{1i}^{-1}\bar{\Gamma }_{1il}Y_{1i}^{-1}, h,i,l\in \overline{1,2}\). Applying Schur complement and the matrix inequalities: \(-X_{11}X_{12}^{-1}X_{11}\le -2\varepsilon _1 X_{11}+\varepsilon _1^{2}X_{12}\), \(-Y_{11}Y_{12}^{-1}Y_{11}\le -2\varepsilon _2 Y_{11}+\varepsilon _2^{2}Y_{12}\). By applying Lemma 2, we can derive from (21) that

$$\begin{aligned} \left[ \begin{array}{cccc}\Theta _{1il}^{vmwn}(z) &{}\hat{X}_{1i}&{}\hat{Y}_{1i} \\ * &{}-\theta _{i}(X_0+X_0^{T})&{}0\\ * &{}* &{}-\epsilon _{i}(Y_0+Y_0^{T}) \\ \end{array} \right] <0 \end{aligned},$$
(54)

where \(\hat{X}_{1i}=\mathcal {A}_1^{T}(X_{1i}-X_0)^{T}+\mathcal {B}_1(\theta _{i}X_0)\), \(\hat{Y}_{1i}=\mathcal {A}_2^{T}(Y_{1i}-Y_0)^{T}+\mathcal {B}_2(\epsilon _{i}Y_0)\), \(\Theta _{1il}^{vmwn}(z)=\bar{\Xi }_{1il}^{vmwn}(z)+\mathcal {B}_1X_0\mathcal {A}_1+ (\mathcal {B}_1X_0\mathcal {A}_1)^{T}+\mathcal {B}_2Y_0\mathcal {A}_2+(\mathcal {B}_2 Y_0\mathcal {A}_2)^{T}\), \(\mathcal {A}_1=[I \ 0 \ 0 \ 0]\), \(\mathcal {B}_1=\text {col}(B_{1v}K_m, 0, 0, 0)\), \(\mathcal {A}_2=[0 \ I \ 0 \ I]\), \(\mathcal {B}_2=\text {col}(0, B_{u_2}(z)W_{ns}, 0, 0)\), and

$$\begin{aligned} \bar{\Xi }_{1il}^{vmwn}(z)= \,& {} \left[ \begin{array}{cccc}\bar{\Phi }_{1il}^{vm} &{}\bar{\Phi }_{1i}^{v}(z)&{} 0 &{}0\\ * &{}\bar{\Phi }_{1il}^{wn}(z)&{}0 &{}0\\ * &{} * &{}\bar{\Phi }_{1il}(z) &{}0\\ *&{}*&{}*&{}-\frac{\pi ^{2}}{\Delta _s^{2}}\bar{\Gamma }_{1il}\\ \end{array} \right] \end{aligned},$$
(55)

in which \(\bar{\Phi }_{1il}^{vm}=\frac{1}{l_2-l_1}\{(\frac{\ln \mu _1}{\delta _{1l}} +2\xi )X_{1i}+\frac{1}{\delta _{1l}}X_{1i}(P_{11}-P_{12})X_{1i} +A_{1v}X_{1i}+X_{1i}A_{1v}^{T}\}\), \(\bar{\Phi }_{1i}^{v}(z)=G_{1v}Y_{1i}+X_{1i}G_{2v}^{T}(z)\), and \(\bar{\Phi }_{1il}^{wn}(z)=(\frac{\ln \mu _1}{\delta _{1l}}+2\xi )Y_{1i} +\frac{1}{\delta _{1l}}Y_{1i}(Q_{11}-Q_{12})Y_{1i}+A_{2w}(z)Y_{1i} +Y_{1i}A_{2w}^{T}(z)-\frac{\pi ^{2}}{(l_2-l_1)^{2}}\bar{U}_{1il}, \bar{\Phi }_{1il}(z)=-\Upsilon (z)Y_{1i}-Y_{1i}\Upsilon ^{T}(z)+\bar{U}_{1il}\).

Based on Lemma 3, it can be concluded that the matrix inequalities (54) imply that

$$\begin{aligned} \hat{\Xi }_{1il}^{vmwn}(z)<0,i,l=1,2 \end{aligned},$$
(56)
$$\begin{aligned} \hat{\Xi }_{1il}^{vmwn}(z)= \,& {} \bar{\Xi }_{1il}^{vmwn}(z)+\mathcal {B}_1X_{1i}\mathcal {A}_1+ (\mathcal {B}_1X_{1i}\mathcal {A}_1)^{T}\\{} & {} +\mathcal {B}_2Y_{1i}\mathcal {A}_2+(\mathcal {B}_2 Y_{1i}\mathcal {A}_2)^{T}. \end{aligned} $$

Pre- and post-multiplying (56) by \(\text {diag}\{P_{1i},Q_{1i},Q_{1i},Q_{1i}\}\) yields that the matrix inequalities (56) are equivalent to (18) with \(h=1\). Pre- and post-multiplying (19) by \(\text {diag}\{P_{1i},Q_{1i},Q_{1i}\}\) yields with \(h=2\). Therefore, it can be concluded that the conclusion of this theorem directly follows from Theorem 1, which completes the proof.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, XD., Wang, ZP., Qiao, J. et al. Fuzzy Intermittent Control for Nonlinear PDE-ODE Coupled Systems. Int. J. Fuzzy Syst. 26, 2585–2601 (2024). https://doi.org/10.1007/s40815-024-01748-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-024-01748-6

Keywords