Abstract
In the application of interval type-2 (IT2) Takagi–Sugeno–Kang (TSK) fuzzy logic systems (FLSs), the center-of-sets (COS) type-reduction (TR) is more advantageous than the centroid TR. This paper proposes three types of discrete non-iterative algorithms to solve the problem of COS TR in IT2 TSK FLSs. Multiple simulation experiments are carried out for the IT2 TSK FLSs with different fuzzy rule numbers. Experimental results show that the computational efficiencies of the three discrete non-iterative algorithms are better than that of Karnik–Mendel (KM) algorithms, which provides latent value for the application of type-2 FLSs.




Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
The authors do not have permission to share data.
References
Niewiadomski, A.: A type-2 fuzzy approach to linguistic summarization of data. IEEE Trans. Fuzzy Syst. 16(1), 198–212 (2008)
Wu, D.R., Mendel, J.M.: Linguistic summarization using IF-THEN rules and interval type-2 fuzzy sets. IEEE Trans. Fuzzy Syst. 19(1), 136–151 (2011)
Castillo, O., Melin, P., Alanis, A., Montiel, O., Sepulveda, R.: Optimization of interval type-2 fuzzy logic controllers using evolutionary algorithms. Soft. Comput. 15(6), 1145–1160 (2011)
Dereli, T., Baykasoglu, A., Altun, K., Durmusoglu, A., Turksen, I.B.: Industrial applications of type-2 fuzzy sets and systems: a concise review. Comput. Ind. 62(2), 125–137 (2011)
Hagras, H.: Type-2 FLCs: a new generation of fuzzy controllers. IEEE Comput. Intell. Mag. 2(1), 30–43 (2007)
Hsiao, M., Li, T.H.S., Lee, J.Z., Chao, C.H., Tsai, S.H.: Design of interval type-2 fuzzy sliding-mode controller. Inf. Sci. 178(6), 1686–1716 (2008)
Hidalgo, D., Castillo, O., Melin, P.: Type-1 and type-2 fuzzy inference systems as integration methods in modular neural networks for multimodal biometry and its optimization with genetic algorithms. Inf. Sci. 179(13), 2123–2145 (2009)
Melin, P., Mendoza, O., Castillo, O.: Face recognition with an improved interval type-2 fuzzy logic Sugeno integral and modular neural networks. IEEE Trans. Syst. Man Cybern. 41(5), 1001–1012 (2011)
Mitchell, H.B.: Pattern recognition using type-II fuzzy sets. Inf. Sci. 170(2–4), 409–418 (2005)
Rhee, F.C.-H.: Uncertainty fuzzy clustering: insights and recommendations. IEEE Comput. Intell. Mag. 2(1), 44–56 (2007)
Liu, X.L., Wan, S.P.: Combinatorial iterative algorithms for computing the centroid of an interval type-2 fuzzy set. IEEE Trans. Fuzzy Syst. 28(4), 607–617 (2020)
Liu, X.L., Lin, Y.C.: New efficient algorithms for the centroid of an interval type-2 fuzzy set. Inf. Sci. 570(1), 1–19 (2021)
Chen, C., John, R., Twycross, J., Garibaldi, J.M.: A direct approach for determining the switch points in the Karnik-Mendel algorithm. IEEE Trans. Fuzzy Syst. 26(2), 1079–1085 (2018)
Mendel, J.M.: On KM algorithms for solving type-2 fuzzy set problems. IEEE Trans. Fuzzy Syst. 21(3), 426–446 (2013)
Chen, Y., Yang, Y.J.: Study on center-of-sets type-reduction of interval type-2 fuzzy logic systems with noniterative algorithms. J. Intell Fuzzy Syst. 40(6), 11099–11106 (2021)
Chen, Y.: Study on sampling based discrete Nie-Tan algorithms for computing the centroids of general type-2 fuzzy sets. IEEE Access 7(1), 156984–156992 (2019)
Wu, D.R.: Approaches for reducing the computational cost of interval type-2 fuzzy logic systems: overview and comparisons. IEEE Trans. Fuzzy Syst. 21(1), 80–99 (2013)
Li, J., John, R., Coupland, S., Kendall, G.: On Nie-Tan operator and type-reduction of interval type-2 fuzzy sets. IEEE Trans. Fuzzy Syst. 26(2), 1036–1039 (2018)
Chen, Y., Wang, D.Z.: Study on centroid type-reduction of general type-2 fuzzy logic systems with weighted Nie-Tan algorithms. Soft. Comput. 22(22), 7659–7678 (2018)
Mendel, J.M., Liu, X.W.: Simplified interval type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 21(6), 1056–1069 (2013)
Chen, Y., Li, C.X., Yang, J.X.: Design of discrete noniterative algorithms for center-of-sets type reduction of general type-2 fuzzy logic systems. J. Intell. Fuzzy Syst. 24(4), 2024–2035 (2022)
EI-Nagar, A.M., EI-Bardini, M.: Simplified interval type-2 fuzzy logic system based on new type-reduction. J. Intell. Fuzzy Syst. 27(4), 1999–2010 (2014)
Chen, Y.: Study on weighted Nagar-Bardini algorithms for centroid type-reduction of general type-2 fuzzy logic systems. J. Intell. Fuzzy Syst. 37(5), 6527–6544 (2019)
Chen, Y.: Study on weighted Nagar-Bardini algorithms for centroid type-reduction of interval type-2 fuzzy logic systems. J. Intell. Fuzzy Syst. 34(4), 2417–2428 (2018)
Biglarbegian, M., Melek, W., Mendel, J.M.: On the robustness of type-1 and interval type-2 fuzzy logic systems in modeling. Inf. Sci. 181(7), 1325–1347 (2011)
Biglarbegian, M., Melek, W., Mendel, J.M.: On the stability of interval type-2 TSK fuzzy logic control systems. IEEE Trans. Syst. Man Cybern. 40(3), 798–818 (2010)
Khanesar, M.A., Jalalian, A., Kaynak, O., Gao, H.J.: Improving the speed of center of set type-reduction in interval type-2 fuzzy systems by eliminating the need for sorting. IEEE Trans. Fuzzy Syst. 25(5), 1193–1206 (2017)
Chen, Y.: Study on sampling-based discrete noniterative algorithms for centroid type-reduction of interval type-2 fuzzy logic systems. Soft. Comput. 24(15), 11819–11828 (2020)
Chen, Y., Yang, J.X., Li, C.X.: Design of Takagi Sugeno Kang type interval type-2 fuzzy logic systems optimized with hybrid algorithms. Int. J. Fuzzy Syst. 25(2), 868–879 (2023)
Ontiveros, E., Melin, P., Castillo, O.: Comparative study of interval type-2 and general type-2 fuzzy systems in medical diagnosis. Inf. Sci. 525, 37–53 (2020)
Cuevas, F., Castillo, O., Cortes, P.: Optimal setting of membership functions for interval type-2 fuzzy tracking controllers using a shark smell metaheuristic algorithm. Int. J. Fuzzy Syst. 24(2), 799–822 (2022)
Castillo, O., Melin, P., Ontiveros, E., et al.: A high-speed interval type 2 fuzzy system approach for dynamic parameter adaptation in metaheuristics. Eng. Appl. Artif. Intell. 85, 666–680 (2019)
Liu, J., Zhao, T., Cao, J., et al.: Interval type-2 fuzzy neural networks with asymmetric MFs based on the twice optimization algorithm for nonlinear system identification. Inf. Sci. 629, 123–143 (2023)
Ontiveros, E., Melin, P., Castillo, O.: Higher order \(\alpha \)-planes integration: a new approach to computational cost reduction of general type-2 fuzzy systems. Eng. Appl. Artif. Intell. 74, 186–197 (2018)
Wu, D.R., Mendel, J.M.: Recommendations on designing practical interval type-2 fuzzy logic systems. Eng. Appl. Artif. Intell. 85, 182–193 (2019)
Chen, Y., Wang, D.Z.: Forecasting by designing Mamdani general type-2 fuzzy logic systems optimized with quantum particle swarm optimization algorithms. Trans. Inst. Meas. Control. 41(10), 2886–2896 (2019)
Chen, Y., Wang, D.Z., Ning, W.: Forecasting by TSK general type-2 fuzzy logic systems optimized with genetic algorithms. Optim. Control Appl. Methods 39(1), 393–409 (2018)
Chen, Y., Li, C.X., Yang, J.X.: Design and application of Nagar-Bardini structure-based interval type-2 fuzzy logic systems optimized with the combination of backpropagation algorithms and recursive least square algorithms. Expert Syst. Appl. 211, 118596 (2023)
Ontiveros-Robles, E., Melin, P., Castillo, O.: An efficient high-order \(\alpha \)-plane aggregation in general type-2 fuzzy systems using newton-cotes rules. Int. J. Fuzzy Syst. 23, 1102–1121 (2021)
Ontiveros-Robles, E., Melin, P., Castillo, O.: New methodology to approximate type-reduction based on a continuous root-finding Karnik Mendel algorithm. Algorithms 10(3), 77 (2017)
Acknowledgements
This paper is sponsored by the National Natural Science Foundation of China (61973146, 61773188), and 2024 Fundamental Research Project (No. LJ212410154062) of the Educational Department of Liaoning Province.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that there exist no conflict of interest.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zhou, J., Chen, Y. Study on Non-iterative Algorithms for Center-of-Sets Type-Reduction of Interval Type-2 Takagi–Sugeno–Kang Fuzzy Logic Systems. Int. J. Fuzzy Syst. 26, 2675–2687 (2024). https://doi.org/10.1007/s40815-024-01873-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40815-024-01873-2