Skip to main content
Log in

Middleware for internet of things: an evaluation in a small-scale IoT environment

  • Original Article
  • Published:
Journal of Reliable Intelligent Environments Aims and scope Submit manuscript

Abstract

The internet of things (IoT) envisages an ultralarge-scale network of things, which will offer services to a large number of applications in numerous domains and environments. A middleware can ease application development by providing the necessary functional components for service registration, discovery and composition. Recently, there have been a large number of proposals for IoT middleware solutions, and a few recent studies have surveyed and qualitatively evaluated these IoT middleware proposals against a variety of functional features. This paper is an extension of these studies with an evaluation of four representative middlewares in a small-scale scenario to provide a more in-depth perspective of the state of the art with reference to the scale and heterogeneity of dynamic IoT environments. The results show a number of issues. Service registration, discovery and composition components still require human intervention. With such a large number of available services, these components need to be automated to enable fast deployment and adaptation of IoT applications. The scalability evaluation of new proposals should follow a holistic approach, as opposed to considering only individual components. Finally, support for user’s non-functional requirements is limited to best-effort QoS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Carriots. https://www.carriots.com/

  2. Choreos. http://www.choreos.eu

  3. Linksmart.https://www.linksmart.eu

  4. Openiot. https://github.com/OpenIotOrg/openiot/wiki

  5. Sparql script. https://github.com/palade/iot/blob/master/openiot/scenario/scenario.rq

  6. Ubiware. http://www.cs.jyu.fi/ai/OntoGroup/ubidoc/

  7. Wrapper script. https://github.com/palade/iot/tree/master/openiot/wrappers

  8. Xively. https://xively.com/

  9. Aggarwal CC, Ashish N, Sheth A (2013) The internet of things: a survey from the data-centric perspective. In: Managing and mining sensor data. Springer, pp 383–428

  10. Al-Fuqaha A, Guizani M, Mohammadi M, Aledhari M, Ayyash M (2015) Internet of things: a survey on enabling technologies, protocols, and applications. IEEE Commun Surv Tutor 17(4):2347–2376

    Article  Google Scholar 

  11. Ali MI, Ono N, Kaysar M, Griffin K, Mileo A (2015) A semantic processing framework for iot-enabled communication systems. In: The Semantic Web—ISWC 2015, Lecture notes in computer science, vol 9367. Springer International Publishing, pp 241–258

  12. Almadani B, Bajwa MN, Yang SH, Saif AWA (2015) Performance evaluation of dds-based middleware over wireless channel for reconfigurable manufacturing systems. Int J Distrib Sens Netw 2015:138

    Google Scholar 

  13. Atzori L, Iera A, Morabito G (2010) The internet of things: a survey. Comput Netw 54(15):2787–2805

    Article  MATH  Google Scholar 

  14. Autili M, Inverardi P, Tivoli M (2014) CHOREOS: Large scale choreographies for the future internet. In: Software maintenance, reengineering and reverse engineering (CSMR-WCRE), 2014 software evolution week-IEEE conference on, pp 391–394. IEEE

  15. Bandyopadhyay S, Sengupta M, Maiti S, Dutta S (2011) Role of middleware for internet of things: a study. Int J Comput Sci Eng Surv (IJCSES) 2(3):94–105

    Article  Google Scholar 

  16. Benatallah B, Dijkman RM, Dumas M, Maamar Z (2005) Service composition: concepts, techniques, tools and trends. Serv Oriented Softw Syst Eng Challeng Pract 48–66

  17. Campos F, Pereira J (2015) An experimental evaluation of machine-to-machine coordination middleware. In: Proceedings of the 30th annual ACM symposium on applied computing. ACM, pp 2332–2334

  18. Cassar G, Barnaghi PM, Wang W, De S, Moessner K (2013) Composition of services in pervasive environments: a Divide and Conquer approach. In: 2013 IEEE symposium on computers and communications, ISCC 2013, Split, Croatia, 7–10 July, 2013, pp 226–232

  19. Chaqfeh MA, Mohamed N (2012) Challenges in middleware solutions for the internet of things. In: Collaboration technologies and systems (CTS), 2012 international conference on IEEE, pp 21–26

  20. Cochez M (2012) Semantic Agent Programming Language: use and formalization. Master thesis, University of Jyväskylä. http://www.cs.jyu.fi/ai/OntoGroup/ubidoc/miselico-thesis.pdf

  21. Cochez M, Nagy M. Ubiware infrastructure guide. http://www.cs.jyu.fi/ai/OntoGroup/ubidoc/Infrastructure.pdf

  22. De S, Christophe B, Moessner K (2014) Semantic enablers for dynamic digital-physical object associations in a federated node architecture for the internet of things. Ad Hoc Netw 18:102–120

    Article  Google Scholar 

  23. De S, Elsaleh T, Barnaghi P, Meissner S (2012) An Internet of Things platform for real-world and digital objects. Scalable Comput Pract Exp 13(1)

  24. Delicato FC, Pires PF, Batista T (2013) Middleware solutions for the internet of things. Springer, New York

  25. Delicato FC, Pires PF, Rust L, Pirmez L, de Rezende JF (2005) Reflective middleware for wireless sensor networks. In: Proceedings of the 2005 ACM symposium on applied computing. ACM, pp 1155–1159

  26. Dohr A, Modre-Opsrian R, Drobics M, Hayn D, Schreier G (2010) The internet of things for ambient assisted living. In: Information technology: new generations (ITNG), 2010 seventh international conference on, pp 804–809

  27. Eisenhauer M, Rosengren P, Antolin P, Giusto D, Iera A, Morabito G, Atzori L (2010) A development platform for integrating wireless devices and sensors into ambient intelligence system, pp 367–373

  28. Elfatatry A, Layzell P (2004) Negotiating in service-oriented environments. Commun ACM 47(8):103–108

    Article  Google Scholar 

  29. Geyik SC, Szymanski BK, Zerfos P (2013) Robust dynamic service composition in sensor networks. Serv Comput IEEE Trans 6(4):560–572

    Article  Google Scholar 

  30. Gluhak A, Krco S, Nati M, Pfisterer D, Mitton N, Razafindralambo T (2011) A survey on facilities for experimental internet of things research. IEEE Commun Mag 49(11):58–67

    Article  Google Scholar 

  31. Gubbi J, Buyya R, Marusic S, Palaniswami M (2013) Internet of Things (IoT): a vision, architectural elements, and future directions. Futur Gen Comput Syst 29(7):1645–1660

    Article  Google Scholar 

  32. Guinard D, Trifa V, Karnouskos S, Spiess P, Savio D (2010) Interacting with the soa-based internet of things: Discovery, query, selection, and on-demand provisioning of web services. Serv Comput IEEE Trans 3(3):223–235

    Article  Google Scholar 

  33. Hachem S (2014) Service-Oriented middleware for the large-scale mobile Internet of Things. Ph.D. thesis, Université de Versailles-Saint Quentin en Yvelines

  34. Hadim S, Mohamed N (2006) Middleware: middleware challenges and approaches for wireless sensor networks. IEEE Distrib Syst Online 7(3):1–1

    Article  Google Scholar 

  35. Hamida A, Kon F, Lago N, Zarras A, Athanasopoulos D, Pilios D, Vassiliadis P, Georgantas N, Issarny V, Mathioudakis G, Bouloukakis G, Jarma Y, Hachem S, Pathak A (2013) Integrated CHOReOS middleware—enabling large-scale, QoS-aware adaptive choreographies

  36. Highsmith J, Cockburn A (2001) Agile software development: the business of innovation. Computer 34(9):120–127

    Article  Google Scholar 

  37. Hudert S, Ludwig H, Wirtz G (2009) Negotiating slas-an approach for a generic negotiation framework for ws-agreement. J Grid Comput 7(2):225–246

    Article  Google Scholar 

  38. Katasonov A, Cochez M (2012) UBIWARE Platform—RAB overview. http://www.cs.jyu.fi/ai/OntoGroup/ubidoc/RAB_overview.pdf

  39. Katasonov A, Kaykova O, Khriyenko O, Nikitin S, Terziyan VY (2008) Smart semantic middleware for the internet of things. ICINCO-ICSO 8:169–178

    Google Scholar 

  40. Katasonov A, Nagy M, Cochez M (2012) Ubiware application developer guide . http://www.cs.jyu.fi/ai/OntoGroup/ubidoc/Application_developer.pdf

  41. Kim HS, Seo JS, Seo J (2015) Performance evaluation of a smart coap gateway for remote home safety services. KSII Trans Internet Inf Syst (TIIS) 9(8):3079–3089

    Article  Google Scholar 

  42. Kostelnik P, Sarnovsk M, Furdik K (2011) The semantic middleware for networked embedded systems applied in the internet of things and Services domain. Scalable Comput Pract Exp 12(3)

  43. Kyriazis D (2013) Cloud Computing Service Level Agreements - Exploitation of Research Results. European Commission (June). http://ec.europa.eu/digital-agenda/en/news/cloud-computing-service-level-agreements-exploitation-research-results

  44. Li S, Da Xu L, Zhao S (2015) The internet of things: a survey. Inf Syst Front 17(2):243–259

    Article  Google Scholar 

  45. Liu T, Martonosi M (2003) Impala: A middleware system for managing autonomic, parallel sensor systems. In: ACM SIGPLAN notices, vol 38. ACM, pp 107–118

  46. Liu Y, Zhou G (2012) Key technologies and applications of Internet of Things. In: Intelligent computation technology and automation (ICICTA), 2012 fifth international conference on IEEE, pp 197–200

  47. Lockerbie J, De Angelis G, Andreozzi L, Autili M, Georgantas N, Zarras A, Kon F, Oliva G, Moura P, Moreira dos Santos C, Ben Hamida A, Parathyras T, CHOReOS Final technical assessment report (D10.3)

  48. Mashal I, Alsaryrah O, Chung TY, Yang CZ, Kuo WH, Agrawal DP (2015) Choices for interaction with things on internet and underlying issues. Ad Hoc Netw 28:68–90

    Article  Google Scholar 

  49. Mbarek N, Krief F, Negru D (2008) Slnp usage for qos negotiation in heterogeneous environments. In: Computer systems and applications, 2008. AICCSA 2008. IEEE/ACS international conference on IEEE, pp 958–963

  50. Mineraud J, Mazhelis O, Su X, Tarkoma S (2016) A gap analysis of internet-of-things platforms. Comput Commun 89:5–16

    Article  Google Scholar 

  51. Misura K, Zagar M (2014) Internet of things cloud mediator platform. In: Information and communication technology, electronics and microelectronics (MIPRO), 2014 37th international convention on IEEE, pp 1052–1056

  52. Naumenko A, Katasonov A, Terziyan V (2007) A security framework for smart ubiquitous industrial resources. In: Gonçalves R, Müller J, Mertins K, Zelm M (eds) Enterprise interoperability II SE - 19. Springer, London, pp 183–194

    Chapter  Google Scholar 

  53. Nikitin S, Katasonov A, Terziyan V (2009) Ontonuts: Reusable semantic components for multi-agent systems. In: Autonomic and autonomous systems, 2009. ICAS ’09. Fifth international conference on, pp 200–207

  54. Oh GO, Kim DY, Kim SI, Rhew SY (2006) A quality evaluation technique of rfid middleware in ubiquitous computing. In: Hybrid information technology, 2006. ICHIT ’06. International conference on, vol 2, pp 730–735

  55. Palade A, Cabrera C, White G, Razzaque M, Clarke S (2017) Middleware for internet of things: a quantitative evaluation in small scale. In: A world of wireless, mobile and multimedia networks (WoWMoM), 2017 IEEE 18th international symposium on IEEE, pp 1–6

  56. Paridel K, Bainomugisha E, Vanrompay Y, Berbers Y, De Meuter W (2010) Middleware for the internet of things, design goals and challenges. Electron Commun EASST 28

  57. Paridel K, Bainomugisha E, Vanrompay Y, Berbers Y, Meuter WD (2010) Middleware for the internet of things, design goals and challenges. Electron Commun EASST 28

  58. Patel P (2013) Enabling high-level application development for the internet of things. Theses, Université Pierre et Marie Curie - Paris VI

  59. Perera C, Jayaraman PP, Zaslavsky A, Christen P, Georgakopoulos D (2014) Mosden: an internet of things middleware for resource constrained mobile devices. In: Proceedings of the 2014 47th Hawaii international conference on system sciences. IEEE Computer Society, Washington, DC, pp 1053–1062

  60. Project H, LinkSmart Web Site. https://www.linksmart.eu/redmine/projects/linksmart-opensource/wiki

  61. Rana O, Warnier M, Quillinan TB, Brazier F (2008) Monitoring and reputation mechanisms for service level agreements. Lect Notes Comput Sci 5206:125–139

    Article  Google Scholar 

  62. Razzaque M, Milojevic-Jevric M, Palade A, Clarke S (2016) Middleware for internet of things: a survey. Internet Things J IEEE 3(1)

  63. Saaty TL (2008) Decision making with the analytic hierarchy process. Int J Serv Sci 1(1):83–98

    Google Scholar 

  64. Saravanan K, Rajaram M (2015) An exploratory study of cloud service level agreements-state of the art review. KSII Trans Internet Inf Syst 9(3)

  65. Silva JR, C Delicato F, Pirmez L, F Pires P, MT Portocarrero J, C Rodrigues T, V Batista T (2014) Prisma: a publish-subscribe and resource-oriented middleware for wireless sensor networks. In: AICT 2014, the tenth advanced international conference on telecommunications, pp 87–97

  66. Soldatos J, Kefalakis N, Hauswirth M, Serrano M, Calbimonte JP, Riahi M, Aberer K, Jayaraman P, Zaslavsky A, Žarko I, Skorin-Kapov L, Herzog R (2015) Openiot: open source internet-of-things in the cloud. In: Interoperability and open-source solutions for the internet of things, Lecture notes in computer science, vol 9001. Springer International Publishing, pp 13–25

  67. Strunk A (2010) QoS-aware service composition: a survey. In: Web Services (ECOWS), 2010 IEEE 8th European conference on IEEE, pp 67–74

  68. Teixeira T, Hachem S, Issarny V, Georgantas N (2011) Service oriented middleware for the internet of things: a perspective. In: Towards a service-based internet. Springer, pp 220–229

  69. Thangavel D, Ma X, Valera A, Tan HX, Tan CKY (2014) Performance evaluation of mqtt and coap via a common middleware. In: Intelligent sensors, sensor networks and information processing (ISSNIP), 2014 IEEE ninth international conference on IEEE, pp 1–6

  70. Wang W, De S, Cassar G, Moessner K (2013) Knowledge representation in the internet of things: semantic modelling and its applications. Automatika J Control Measur Electron Comput Commun 54(4)

  71. White G, Palade A, Cabrera C, Clarke S (2017) Quantitative evaluation of qos prediction in iot. In: 3rd international workshop on recent advances in the dependability assessment of complex systems

  72. Whitmore A, Agarwal A, Da Xu L, The internet of thingsa survey of topics and trends. Inf Syst Front 17(2):261–274

  73. Zanella A, Bui N, Castellani A, Vangelista L, Zorzi M (2014) Internet of things for smart cities. IEEE Internet Things J 1(1):22–32

    Article  Google Scholar 

  74. Zhang W, Hansen KM (2008) Semantic Web Based Self-Management for a Pervasive Service Middleware. In: 2008 Second IEEE international conference on self-adaptive and self-organizing systems. IEEE, pp 245–254

Download references

Acknowledgements

This work was funded by the Science Foundation Ireland (SFI) under Grant 13/IA/1885.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Palade.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palade, A., Cabrera, C., Li, F. et al. Middleware for internet of things: an evaluation in a small-scale IoT environment. J Reliable Intell Environ 4, 3–23 (2018). https://doi.org/10.1007/s40860-018-0055-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40860-018-0055-4

Keywords

Navigation