Skip to main content
Log in

MaritimeDS: a data service framework for unsupervised maritime traffic monitoring based on trajectory big data

  • Original Article
  • Published:
Journal of Reliable Intelligent Environments Aims and scope Submit manuscript

Abstract

The large maritime traffic volume and its great impact on economy, environment and security make an unsupervised maritime traffic monitoring system in great need. Most of the current related research focuses on intelligent analysis or trajectory mining algorithms, while ignoring how to make good use of domain knowledge and model flexible software components, which leads to the related business functions implemented by IT staff through ad hoc coding. And what’s more, the lack of rich and detailed road information in the maritime transportation field makes it challenging to carry out diverse maritime monitoring business. This paper proposes a data service framework for unsupervised maritime traffic monitoring named MaritimeDS. The framework provides a unified domain model, in which the vessel trajectories are modeled through a layer-by-layer data model and maritime traffic structure is modeled as a spatial model. The highest layer is semantic trajectory, which is modeled based on the traffic structure generated through a novel T2I-CycleGAN model-based trajectory analysis service solving the problem of lacking paired training sets in maritime data. Case study and experiments show that compared with similar work, in the absence of detailed road information, IT staff can build maritime traffic structure, and carry out unified modeling and implementation of business functions related to traffic monitoring on this basis, which can improve development efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. https://www.github.com/yxk121/MaritimeDS/.

References

  1. Agamennoni G, Nieto JI, Nebot EM (2011) Robust inference of principal road paths for intelligent transportation systems. IEEE Trans Intell Transp Syst 12(1):298–308

    Article  Google Scholar 

  2. Arguedas VF, Pallotta G, Vespe M (2014) Automatic generation of geographical networks for maritime traffic surveillance. In: 17th international conference on information fusion (FUSION), pp 1–8

  3. Arguedas VF, Pallotta G, Vespe M (2017) Maritime traffic networks: from historical positioning data to unsupervised maritime traffic monitoring. IEEE Trans Intell Transp Syst 19(3):722–732

    Article  Google Scholar 

  4. Biagioni J, Eriksson J (2012) Inferring road maps from global positioning system traces: survey and comparative evaluation. Transp Res Rec 2291(1):61–71

    Article  Google Scholar 

  5. Carey MJ, Onose N, Petropoulos M (2012) Data services. Commun ACM 55(6):86–97

    Article  Google Scholar 

  6. Chuanwei L, Qun S, Bing C, Bowei W, Yunpeng Z, Li X (2020) Road learning extraction method based on vehicle trajectory data. Acta Geod Cartogr Sin 49(6):692

    Google Scholar 

  7. Dobrkovic A, Iacob ME, van Hillegersberg J (2018) Maritime pattern extraction and route reconstruction from incomplete AIS data. Int J Data Sci Anal 5(2):111–136

    Article  Google Scholar 

  8. Engin D, Genç A, Kemal Ekenel H (2018) Cycle-dehaze: Enhanced CycleGAN for single image dehazing. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 825–833

  9. Fernandez Arguedas V, Pallotta G, Vespe M (2018) Maritime traffic networks: from historical positioning data to unsupervised maritime traffic monitoring. IEEE Trans Intell Transp Syst 19(3):722–732

    Article  Google Scholar 

  10. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: Advances in neural information processing systems, pp 2672–2680

  11. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778

  12. Hung CC, Peng WC, Lee WC (2015) Clustering and aggregating clues of trajectories for mining trajectory patterns and routes. VLDB J 24(2):169–192

    Article  Google Scholar 

  13. Isola P, Zhu JY, Zhou T, Efros AA (2017) Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1125–1134

  14. Koubarakis M, Sellis T, Frank AU, Grumbach S, Güting RH, Jensen CS, Lorentzos N, Manolopoulos Y, Nardelli E, Pernici B et al (2003) Spatio-temporal databases: the CHOROCHRONOS approach, vol 2520. Springer, Berlin

    MATH  Google Scholar 

  15. Le Guillarme N, Lerouvreur X (2013) Unsupervised extraction of knowledge from S-AIS data for maritime situational awareness. In: Proceedings of the 16th International Conference on Information Fusion, pp. 2025–2032

  16. Lee JG, Han J, Whang KY (2007) Trajectory clustering: a partition-and-group framework. In: Proceedings of the 2007 ACM SIGMOD international conference on management of data, SIGMOD ’07. ACM, New York, NY, USA, pp 593–604

  17. Li J, Chen W, Li M, Zhang K, Yajun L (2018) The algorithm of ship rule path extraction based on the grid heat value. J Comput Res Dev 55(5):908–919

    Google Scholar 

  18. Li Z, Wang G, Meng J, Xu Y (2019) The parallel and precision adaptive method of marine lane extraction based on QuadTree. In: Gao H, Wang X, Yin Y, Iqbal M (eds) Collaborative computing: networking, applications and worksharing. Springer International Publishing, Cham, pp 170–188

    Chapter  Google Scholar 

  19. Lu Y, Tai YW, Tang CK (2018) Attribute-guided face generation using conditional CycleGAN. In: Proceedings of the European conference on computer vision (ECCV), pp 282–297

  20. Pallotta G, Vespe M, Bryan K (2013) Vessel pattern knowledge discovery from AIS data: a framework for anomaly detection and route prediction. Entropy 15(6):2218–2245

    Article  Google Scholar 

  21. Robin A. Botts M (eds) (2014) OGC® SensorML: Model and XML Encoding Standard, Version 2.0.0. Wayland, MA, Open Geospatial Consortium, (OGC 12-000), pp 196. https://doi.org/10.25607/OBP-612

  22. Ruan S, Long C, Bao J, Li C, Yu Z, Li R, Liang Y, He T, Zheng Y (2020) Learning to generate maps from trajectories. In: Proceedings of the AAAI conference on artificial intelligence, vol 34, pp 890–897

  23. Shi W, Shen S, Liu Y (2009) Automatic generation of road network map from massive gps, vehicle trajectories. In: 2009 12th international IEEE conference on intelligent transportation systems, pp 1–6. IEEE

  24. Spiliopoulos G, Zissis D, Chatzikokolakis K (2018) A big data driven approach to extracting global trade patterns. In: Doulkeridis C, Vouros GA, Qu Q, Wang S (eds) Mobility analytics for spatio-temporal and social data. Springer International Publishing, Cham, pp 109–121

    Chapter  Google Scholar 

  25. Tryfona N, Jensen CS (1999) Conceptual data modeling for spatiotemporal applications. GeoInformatica 3(3):245–268

    Article  Google Scholar 

  26. Ulyanov D, Vedaldi A, Lempitsky V (2016) Instance normalization: the missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022

  27. Wang G, Meng J, Han Y (2019) Extraction of maritime road networks from large-scale AIS data. IEEE Access 7:123035–123048

    Article  Google Scholar 

  28. Wang G, Meng J, Li Z, Hesenius M, Ding W, Han Y, Gruhn V (2020) Adaptive extraction and refinement of marine lanes from crowdsourced trajectory data. Mobile Netw Appl 25:1–13

    Article  Google Scholar 

  29. Wang G, Yang S, Han Y (2009) Mashroom: end-user mashup programming using nested tables. In: Proceedings of the 18th international conference on World wide web, pp 861–870

  30. Wang G, Zuo X, Hesenius M, Xu Y, Han Y, Gruhn V (2019) A data services composition approach for continuous query on social media streams. In: Transactions on large-scale data-and knowledge-centered systems XL. Springer, pp 26–57

  31. Wei Y, Tinghua A (2016) Road centerline extraction from crowdsourcing trajectory data. Geogr Geo Inf Sci 32(3):1–7

    Google Scholar 

  32. Yan W, Wen R, Zhang AN, Yang D (2016) Vessel movement analysis and pattern discovery using density-based clustering approach. In: 2016 IEEE international conference on big data (Big Data), pp 3798–3806

  33. Yang W, Ai T (2017) The extraction of road boundary from crowdsourcing trajectory using constrained Delaunay triangulation. Acta Geod Cartogr Sin 46(2):237–245

    Google Scholar 

  34. Yang W, Ai T, Lu W (2018) A method for extracting road boundary information from crowdsourcing vehicle GPS trajectories. Sensors 18(4):2660-2680

    Google Scholar 

  35. Yang X, Wang G, Yan J, Gao J (2020) T2I-CycleGAN: a CycleGAN for maritime road network extraction from crowdsourcing spatio-temporal ais trajectory data. In: International conference on collaborative computing: networking, applications and worksharing. Springer, pp 203–218

  36. Zhao S, Lin C, Xu P, Zhao S, Guo Y, Krishna R, Ding G, Keutzer K (2019) Cycleemotiongan: emotional semantic consistency preserved CycleGAN for adapting image emotions. In: Proceedings of the AAAI conference on artificial intelligence, vol 33, pp 2620–2627

  37. Zhu JY, Park T, Isola P, Efros AA (2017) Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE international conference on computer vision, pp 2223–2232

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guiling Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by National Natural Science Foundation of China (Grant no. 61832004) and Projects of International Cooperation and Exchanges NSFC (Grant no. 62061136006).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Wang, G. & Gao, J. MaritimeDS: a data service framework for unsupervised maritime traffic monitoring based on trajectory big data. J Reliable Intell Environ 8, 3–19 (2022). https://doi.org/10.1007/s40860-021-00163-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40860-021-00163-0

Keywords

Navigation