Skip to main content
Log in

SUIL: a modeling language for spatial user interaction

  • Original Article
  • Published:
Journal of Reliable Intelligent Environments Aims and scope Submit manuscript

Abstract

With spatial user interaction, system functions are triggered in response to spatial events. These latter are built from spatial attributes of the tracked entities or spatial relations between them. We call these entities spatial interactors (spins). Spins can be user bodies or tangible objects manipulated by users. Spatial interaction offers intuitive interactions between users and their environment, especially within ambient smart environments. Such paradigm of user interaction finds its use in daily life where interconnected objects are in constant interaction. Many spatial applications exist but they are generally constructed based on ad hoc developments. In fact, there is a lack of generic approaches capable of supporting the process of building spatial applications, from the design phase to the deployment one. In this context, following a model-driven engineering (MDE) approach, we propose a spatial interaction modeling language called SUIL (spatial user interaction language). We propose likewise a framework called SUIC (spatial user interface creator) for modeling and code generating of spatial interfaces. To prove the feasibility of our approach, we present a case study that we carried out through our framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Notes

  1. https://www.uml.org/what-is-uml.htm.

  2. https://www.eclipse.org/modeling/emf/.

  3. Radio-Frequency IDentification.

  4. https://www.obeodesigner.com/en/product/sirius.

  5. https://www.eclipse.org/acceleo/.

References

  1. Addlesee M, Curwen R, Hodges S, Newman J, Steggles P, Ward A, Hopper A (2001) Implementing a sentient computing system. Computer 34(8):50–56

    Article  Google Scholar 

  2. Bellik Y, Farcy R (2002) Comparison of various interface modalities for a locomotion assistance device. In: International Conference on computers for handicapped Persons, pp 421–428. Springer

  3. Blanc X, Salvatori O (2011) MDA en action: Ing´enierie logicielle guidée par les modèles. Editions Eyrolles

    Google Scholar 

  4. Bowman DA, Coquillart S, Froehlich B, Hirose M, Kitamura Y, Kiyokawa K, Stuerzlinger W (2008) 3d user interfaces: New directions and perspectives. IEEE Comput Graphics Appl 28(6):20–36

    Article  Google Scholar 

  5. Bruner RD (2012) Exploring spatial interactions. Ph.D. Thesis

  6. Cardenas C, Garcia-Macias JA (2017) Proximithings: Implementing proxemic interactions in the internet of things. Proc Comput Sci 113:49–56

    Article  Google Scholar 

  7. Chan LKY, Kenderdine S, Shaw J (2013) Spatial user interface for experiencing mogao caves. In: Proceedings of the 1st Symposium on spatial user interaction, pp 21–24

  8. Chulpongsatorn N, Yu J, Knudsen S (2020) Exploring design opportunities for visually congruent proxemics in information visualization: A Design space

  9. Combemale B (2008) Ingénierie Dirigée par les Modèles (IDM)--État de l'art

  10. Czarnecki K, Helsen S (2006) Feature-based survey of model transformation approaches. IBM Syst J 45(3):621–645

    Article  Google Scholar 

  11. Da Silva AR (2015) Model-driven engineering: A survey supported by the unified conceptual model. Comput Lang Syst Struct 43:139–155

    Google Scholar 

  12. Diaw S, Lbath R, Coulette B (2010) Etat de l’art sur le développement logiciel basé sur les transformations de modèles. Tech Sci Inf 29:505–536

    Google Scholar 

  13. Dostal J, Hinrichs U, Kristensson PO, Quigley A (2014) Spidereyes: designing attention-and proximityaware collaborative interfaces for wall-sized displays. In: Proceedings of the 19th International Conference on intelligent user interfaces, pp 143–152

  14. Duval T, Blouin A, Jézéquel JM (2014) When model driven engineering meets virtual reality: Feedback from application to the collaviz framework. In: 2014 IEEE 7th Workshop on software engineering and architectures for realtime interactive systems (SEARIS), pp. 27–34. IEEE

  15. Elouali N, Le Pallec X, Rouillard J, Tarby JC (2014) Mimic: leveraging sensor-based interactions in multimodal mobile applications. In: CHI’14 Extended Abstracts on human factors in computing systems, pp 2323–2328

  16. Falk J, Ljungstrand P, Bjork S, Hansson R (2001) Pirates: proximity-triggered interaction in a multiplayer game. In: CHI’01 Extended Abstracts on human factors in computing systems, pp 119–120

  17. Fowler M (2010) Domain-specific languages. Pearson Education

    Google Scholar 

  18. Gaouar L, Benamar A, Le Goaer O, Biennier F (2018) Hcidl: Human-computer interface description language for multi-target, multimodal, plastic user interfaces. Future Comput Inf J 3(1):110–130

    Article  Google Scholar 

  19. Garcia-Macias JA, Ramos AG, HasimotoBeltran R, Hernandez SEP (2019) Uasisi: a modular and adaptable wearable system to assist the visually impaired. Proc Comput Sci 151:425–430

    Article  Google Scholar 

  20. Greenberg S, Marquardt N, Ballendat T, DiazMarino R, Wang M (2011) Proxemic interactions: the new ubicomp? Interactions 18(1):42–50

    Article  Google Scholar 

  21. Hakulinen J, Turunen M, Heimonen T (2013) Spatial control framework for interactive lighting. In: Proceedings of International Conference on making sense of converging media, pp 59–66

  22. Holzmann CHM (2011) Vision-based distance and position estimation of nearby objects for mobile spatial interaction. In: Proceedings of the 16th international Conference on Intelligent user interfaces, pp 339–342

  23. Hornecker E, Buur J (2006) Getting a grip on tangible interaction: a framework on physical space and social interaction. In: Proceedings of the SIGCHI Conference on human factors in computing systems, pp 437–446

  24. Huo K, Cao Y, Yoon SH, Xu Z, Chen G, Ramani K (2018) Scenariot: spatially mapping smart things within augmented reality scenes. In: Proceedings of the 2018 CHI Conference on human factors in computing systems, pp 1–13

  25. Ishikawa Y, Shizuki B, Hoshino J (2017) Evaluation of finger position estimation with a small ranging sensor array. In: Proceedings of the 5th Symposium on spatial user interaction, pp 120–127

  26. Jakobsen MR, Haile YS, Knudsen S, Hornbæk K (2013) Information visualization and proxemics: design opportunities and empirical findings. IEEE Trans Vis Comput Graph 19(12):2386–2395

    Article  Google Scholar 

  27. Kim HJ, Kim JW, Nam TJ (2016) Ministudio: Designers’ tool for prototyping ubicomp space with interactive miniature. In: Proceedings of the 2016 CHI Conference on human factors in computing systems, pp 213–224

  28. Kim M, Maher ML (2005) Comparison of designers using a tangible user interface and a graphical user interface and the impact on spatial cognition. In: Proc. Human behaviour in design, p 5

  29. Lee J, Olwal A, Ishii H, Boulanger C (2013) Spacetop: integrating 2d and spatial 3d interactions in a see-through desktop environment. In: Proceedings of the SIGCHI Conference on human factors in computing systems, pp 189–192

  30. Lee JJ, Park JM (2018) I-typed dmml: A novel dsl for direct manipulation interaction with virtual objects. Interact Comput 30(4):336–357

    Article  Google Scholar 

  31. Li FCY, Dearman D, Truong KN (2009) Virtual shelves: interactions with orientation aware devices. In: Proceedings of the 22nd Annual ACM Symposium on user interface software and technology, pp 125–128

  32. Looker J, Garvey T (2016) Kubit: a responsive and ergonomic holographic user interface for a proxemic workspace. In: Advances in ergonomics in design. Springer, Cham, pp 811–821

  33. Marquardt N, Diaz-Marino R, Boring S, Greenberg S (2011) The proximity toolkit: prototyping proxemic interactions in ubiquitous computing ecologies. In: Proceedings of the 24th annual ACM symposium on user interface software and technology, pp 315–326

  34. Parle E, Quigley A (2006) Proximo, location-aware collaborative recommender. School of Computer Science and Informatics, University College Dublin Ireland, pp 1251–1253

    Google Scholar 

  35. Patel SN, Rekimoto J, Abowd GD (2006) icam: Precise at-a-distance interaction in the physical environment. In: International Conference on pervasive computing. Springer, Berlin, Heidelberg, pp 272–287

  36. Perez P, Roose P, Dalmau M, Cardinale Y, Masson D, Couture N (2020) Modélisation graphique des environnements proxémiques basée sur un DSL. In: INFORSID 2020, pp 99–14. dblp

  37. Prante T, R¨ocker C, Streitz N, Stenzel R, Magerkurth C, Van Alphen D, Plewe D (2003) Hello. Wall-beyond ambient displays. In: Adjunct Proceedings of Ubicomp, vol 2003, pp 277–278

  38. Rateau H, Grisoni L, Araujo B (2014) Exploring tablet surrounding interaction spaces for medical imaging. In: Proceedings of the 2nd ACM Symposium on spatial user interaction, pp 150–150

  39. Rekimoto J, Ayatsuka Y, Kohno M, Oba H (2003) Proximal interactions: a direct manipulation technique for wireless networking. In: Interact, vol 3. pp 511–518

  40. Roussel N, Evans H, Hansen H (2004) Mirrorspace: using proximity as an interface to video-mediated communication. In: International Conference on pervasive computing. Springer, Berlin, Heidelberg, pp 345–350

  41. Schüsselbauer D, Schmid A, Wimmer R, Muth L (2018) Spatially-aware tangibles using mouse sensors. In: Proceedings of the Symposium on spatial user interaction, pp 173–173

  42. Takala TM (2014) Ruis: a toolkit for developing virtual reality applications with spatial interaction. In: Proceedings of the 2nd ACM Symposium on spatial user interaction, pp 94–103

  43. Tandler P, Prante T, Muller-Tomfelde C, Streitz N, Steinmetz R (2001) Connectables: dynamic coupling of displays for the flexible creation of shared workspaces. In: Proceedings of the 14th Annual ACM Symposium on user interface software and technology, pp 11–20

  44. Volter M, Stahl T, Bettin J, Haase A, Helsen S (2013) Model-driven software development: technology, engineering, management. Wiley

    Google Scholar 

  45. Weiser M (1991) The computer for the 21st century. Sci Am 265(3):94–105

    Article  Google Scholar 

  46. Zhang B, Chen YH, Tuna C, Dave A, Li Y, Lee E, Hartmann B (2014) Hobs: head orientation-based selection in physical spaces. In: Proceedings of the 2nd ACM Symposium on spatial user interaction, pp 17–25

  47. Zhang W, Han B, Hui P (2018) Jaguar: low latency mobile augmented reality with flexible tracking. In: Proceedings of the 26th ACM international conference on multimedia, pp 355–363

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khadidja Chaoui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaoui, K., Bouzidi-Hassini, S. & Bellik, Y. SUIL: a modeling language for spatial user interaction. J Reliable Intell Environ 9, 161–181 (2023). https://doi.org/10.1007/s40860-021-00164-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40860-021-00164-z

Keywords

Navigation