Skip to main content
Log in

MSDN-IoT multicast group communication in IoT based on software defined networking

  • Original Article
  • Published:
Journal of Reliable Intelligent Environments Aims and scope Submit manuscript

Abstract

The Internet of Things (IoT) is a fast-growing paradigm in on-going research fields and industrial domains that includes wireless sensor networks, cloud computing, big data, smart cities, large-scale industrial IoT services, etc. In the Internet of Things architecture, wireless sensor networks can be an important factor in optimizing IoT solutions. This architecture includes various gateways, controllers, application servers, and IoT clouds. In many Internet of Things (IoT) applications, messages may need to be distributed to a specific set of objects or nodes using the multicast communication mode. Existing IoT multicast routing algorithms are not performant or efficient enough to support multimedia group-based applications in an IoT context since they are primarily focused on ad hoc sensor networking scenarios. In this paper, we propose MSDN-IoT, a novel multicast software-defined network based on a hierarchical shared multicast tree, and a flexible set of SDN controller modules, like group management for dynamic multicast services. Our results show the effectiveness of our protocol over state-of-the-art protocols in terms of end-to-end delay, end-to-end delay-variation, scalability, and other metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Salma B, Youssef B, Abderrahim H (2020) Software defined networking based for improved wireless sensor network vol. 92. https://doi.org/10.1007/978-3-030-33103-0_25

  2. Deering SE (1989) Host extensions for IP multicasting. Request for Comments RFC 1112, Internet Engineering Task Force . https://doi.org/10.17487/RFC1112. Num Pages: 17. https://datatracker.ietf.org/doc/rfc1112. Accessed 13 Nov 2022

  3. Khan FI, Hameed S (2016) Software defined security service provisioning framework for Internet of Things. Int J Adv Comput Sci Appl (IJACSA). https://doi.org/10.14569/IJACSA.2016.071254. (Number: 12 Publisher: The Science and Information (SAI) Organization Limited. Accessed 2022-11-13)

    Article  Google Scholar 

  4. Khan S, Ali M, Sher N, Asim Y, Naeem W, Kamran M (2016) Software-defined networks (SDNs) and Internet of Things (IoTs): a qualitative prediction for 2020. Int J Adv Comput Sci Appl 7(11):10. https://doi.org/10.14569/IJACSA.2016.071151. (Accessed 2022-11-13)

    Article  Google Scholar 

  5. Chen J, Zheng X, Rong C (2015) Survey on software-defined networking. In: Qiang W, Zheng X, Hsu C-H (eds) Cloud computing and big data. Lecture Notes in Computer Science. Springer, Cham, pp 115–124. https://doi.org/10.1007/978-3-319-28430-9_9

    Chapter  Google Scholar 

  6. Khanh QV, Hoai NV, Manh LD, Le AN, Jeon G (2022) Wireless communication technologies for IoT in 5G: vision, applications, and challenges. Wirel Commun Mob Comput. https://doi.org/10.1155/2022/3229294. (Publisher: Hindawi)

    Article  Google Scholar 

  7. Quy VK, Nam VH, Linh DM, Ngoc LA (2022) Routing algorithms for MANET-IoT networks: a comprehensive survey. Wirel Pers Commun 125(4):3501–3525. https://doi.org/10.1007/s11277-022-09722-x

    Article  Google Scholar 

  8. Salma B, Youssef B, Abderrahim H (2020) Software defined networking based for improved wireless sensor network. In: Ezziyyani M (ed) Advanced Intelligent Systems for Sustainable Development (AI2SD’2019). Springer, Cham, pp 246–258

  9. Jararweh Y, Al-Ayyoub M, Darabseh A, Benkhelifa E, Vouk M, Rindos A (2015) SDIoT: a software defined based internet of things framework. J Ambient Intell Humaniz Comput 6(4):453–461. https://doi.org/10.1007/s12652-015-0290-y. (Accessed 2022-11-25)

    Article  Google Scholar 

  10. Gu W, Zhang X, Gong B, Wang L (2015) A survey of multicast in software-defined networking. Atlantis Press. ISSN: 2352-5401. https://doi.org/10.2991/icimm-15.2015.198. https://www.atlantis-press.com/proceedings/icimm-15/25690 Accessed 13 Nov 2022

  11. Morreale PA, Anderson JM (2014) Software defined networking: design and deployment. CRC Press, Boca Raton. https://doi.org/10.1201/b17708

    Book  Google Scholar 

  12. Mohammadi R, Javidan R (2022) Efsute: a novel efficient and survivable traffic engineering for software defined networks. J Reliable Intell Environ 8:1–14. https://doi.org/10.1007/s40860-021-00139-0

    Article  Google Scholar 

  13. Ahmad I, Namal S, Ylianttila M, Gurtov A (2015) Security in software defined networks: a survey. IEEE Commun Surv Tutor 17(4):2317–2346. https://doi.org/10.1109/COMST.2015.2474118. (Conference Name: IEEE Communications Surveys & Tutorials)

    Article  Google Scholar 

  14. Hu F, Hao Q, Bao K (2014) A survey on software-defined network and OpenFlow: from concept to implementation. IEEE Commun Surv Tutor 16(4):2181–2206. https://doi.org/10.1109/COMST.2014.2326417. (Conference Name: IEEE Communications Surveys & Tutorials)

    Article  Google Scholar 

  15. Rehmani MH, Davy A, Jennings B, Assi C (2019) Software defined networks-based smart grid communication: a comprehensive survey. IEEE Commun Surv Tutor 21(3):2637–2670. https://doi.org/10.1109/COMST.2019.2908266. (Conference Name: IEEE Communications Surveys & Tutorials)

    Article  Google Scholar 

  16. Benzekki K, El Fergougui A, Elbelrhiti Elalaoui A (2016) Software-defined networking (SDN): a survey. Secur Commun Netw 9(18): 5803–5833. https://doi.org/10.1002/sec.1737. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/sec.1737. Accessed 13 Nov 2022

  17. Bizanis N, Kuipers FA (2016) SDN and virtualization solutions for the internet of things: a survey. IEEE Access 4:5591–5606. https://doi.org/10.1109/ACCESS.2016.2607786. (Conference Name: IEEE Access)

    Article  Google Scholar 

  18. Baddi Y, Ech-Chrif El Kettani MD (2012) VNS-RP algorithm for RP selection in multicast routing protocol PIM-SM. In: Proceedings of 2012 International Conference on multimedia computing and systems, ICMCS 2012, pp 595–600. https://doi.org/10.1109/ICMCS.2012.6320123

  19. Baddi Y, Kettani MDE (2012) VNS-RP algorithm for RP selection in multicast routing protocol PIM-SM. Tangier, pp 595–600

    Google Scholar 

  20. Baddi Y, Ech-Chrif El Kettani M.D (2012) VNS-RP algorithm for RP selection in multicast routing protocol PIM-SM. In: Proceedings of 2012 International Conference on multimedia computing and systems, ICMCS 2012, pp 595–600. https://doi.org/10.1109/ICMCS.2012.6320123

  21. Baddi Y, El Kettani MDEC (2012) VND-CS: a variable neighborhood descent algorithm for core selection problem in Multicast Routing Protocol. In: Benlamri R (ed) Networked digital technologies. NDT 2012. Communications in computer and information science, vol 293. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30507-8_37

  22. Baddi Y, El Kettani MDE-C (2013) Parallel GRASP algorithm with delay and delay variation for rendezvous point selection in PIM-SM multicast routing. J Theoret Appl Inf Technol 57(2):235–243

  23. Baddi Y, Kettani MDE (2012) GRAS-RP: greedy randomized adaptive search algorithm for RP selection in PIM-SM multicast routing. In: Seventh International Conference on inteligent systems : theories and applications (SITA12), Mohammedia, Morocco

  24. Su L, Ding B, Yang Y, Abdelzaher T.F, Cao G, Hou JC (2009) oCast: optimal multicast routing protocol for wireless sensor networks. In: 2009 17th IEEE International Conference on network protocols, pp. 151–160. https://doi.org/10.1109/ICNP.2009.5339689. (ISSN: 1092-1648)

  25. Xie L, Jia X, Zhou K (2012) QoS multicast routing in cognitive radio ad hoc networks. Int J Commun Syst 25(1):30–46. https://doi.org/10.1002/dac.1285. (Accessed 2022-11-13)

    Article  Google Scholar 

  26. Park H, Lee J, Park S, Oh S, Kim S-H (2011) Multicast protocol for real-time data dissemination in wireless sensor networks. IEEE Commun Lett 15:1291–1293. https://doi.org/10.1109/LCOMM.2011.102611.110995

    Article  Google Scholar 

  27. Sanchez JA, Marin-Perez R, Ruiz PM (2012) Beacon-less geographic multicast routing in a real-world wireless sensor network testbed. Wirel Netw 18(5):565–578. https://doi.org/10.1007/s11276-012-0419-2. (Accessed 2022-11-13)

    Article  Google Scholar 

  28. Santamaria AF, Sottile C, Fazio P (2015) PAMTree: partitioned multicast tree protocol for efficient data dissemination in a VANET environment. Int J Distrib Sens Netw 11(5):431492. https://doi.org/10.1155/2015/431492. (Publisher: SAGE Publications. Accessed 2022-11-13)

    Article  Google Scholar 

  29. Pan M-S, Yang S-W (2017) A lightweight and distributed geographic multicast routing protocol for IoT applications. Comput Netw 112:95–107. https://doi.org/10.1016/j.comnet.2016.11.006. (Accessed 2022-11-13)

    Article  Google Scholar 

  30. Conti M, Kaliyar P, Lal C (2017) Remi: a reliable and secure multicast routing protocol for iot networks. In: Proceedings of the 12th International Conference on Availability, Reliability and Security. ARES ’17. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3098954.3106070

  31. Huang J, Duan Q, Zhao Y, Zheng Z, Wang W (2017) Multicast routing for multimedia communications in the Internet of Things. IEEE Internet of Things J 4(1):215–224. https://doi.org/10.1109/JIOT.2016.2642643. (Conference Name: IEEE Internet of Things Journal)

    Article  Google Scholar 

  32. Humernbrum T, Hagedorn B, Gorlatch S (2016) Towards efficient multicast communication in software-defined networks. In: 2016 IEEE 36th International Conference on Distributed Computing Systems Workshops (ICDCSW), pp 106–113 . https://doi.org/10.1109/ICDCSW.2016.15. (ISSN: 2332-5666)

  33. Lin Y-D, Lai Y-C, Teng H-Y, Liao C-C, Kao Y-C (2017) Scalable multicasting with multiple shared trees in software defined networking. J Netw Comput Appl 78:125–133. https://doi.org/10.1016/j.jnca.2016.11.014. (Accessed 2022-11-13)

    Article  Google Scholar 

  34. Cui W, Qian C (2014) Dual-structure data center multicast using software defined networking. https://doi.org/10.48550/arXiv.1403.8065. http://arxiv.org/abs/1403.8065, arXiv. arXiv:1403.8065 [cs]. Accessed 13 Nov 2022

  35. Garey MR, Johnson DS (1990) Computers and intractability. In: Klee V (ed) A guide to the theory of NP-completeness. A series of books in the mathematical sciences. W. H. Freeman and Co., USA

  36. Fenner B, Handley M, Holbrook H, Kouvelas I (2006) Protocol independent multicast-sparse mode (PIM-SM): Protocol Specification (Revised). Request for Comments, vol. 4601. IETF, ???. Published: RFC 4601 (Proposed Standard) Updated by RFC 5059. http://www.ietf.org/rfc/rfc4601.txt. Accessed 20 Nov 2022

  37. Ballardie T, Francis P, Crowcroft J (1993) Core based trees (CBT). ACM SIGCOMM Comput Commun Rev 23(4):85–95. https://doi.org/10.1145/167954.166246. (Accessed 2022-11-15)

    Article  Google Scholar 

  38. de Oliveira RLS, Schweitzer CM, Shinoda AA, Prete LR (2014) Using Mininet for emulation and prototyping Software-Defined Networks. In: 2014 IEEE Colombian Conference on communications and computing (COLCOM), pp. 1–6. https://doi.org/10.1109/ColComCon.2014.6860404

  39. Mininet: an instant virtual network on your laptop (or Other PC)-Mininet. http://mininet.org/. Accessed 13 Nov 2022

  40. Gude N, Koponen T, Pettit J, Pfaff B, Casado M, McKeown N, Shenker S (2008) NOX: towards an operating system for networks. ACM SIGCOMM Comput Commun Rev 38(3):105–110. https://doi.org/10.1145/1384609.1384625. (Accessed 2022-11-13)

  41. Baddi Y, Sebbar A, Zkik K, Boulmalf M, Ech-Cherif El Kettani MD (2020) MSND: multicast software defined network based solution to multicast tree construction. In: Habachi O, Meghdadi V, Sabir E, Cances J-P (eds) Ubiquitous networking. Lecture Notes in Computer Science. Springer, Cham, pp 245–256. https://doi.org/10.1007/978-3-030-58008-7_20

  42. Heckmann O, Piringer M, Schmitt J, Steinmetz R (2003) On realistic network topologies for simulation. In: Proceedings of the ACM SIGCOMM Workshop on Models, Methods and Tools for Reproducible Network Research. MoMeTools ’03, pp. 28–32. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/944773.944779. Accessed 13 Nov 2022

  43. Waxman BM (1988) Routing of multipoint connections. IEEE J Sel Areas Commun 6(9):1617–1622. https://doi.org/10.1109/49.12889. (Conference Name: IEEE Journal on Selected Areas in Communications)

    Article  Google Scholar 

  44. Camilo T, Silva JS, Rodrigues A, Boavida F (2007) GENSEN: a topology generator for real wireless sensor networks deployment. In: Obermaisser R, Nah Y, Puschner P, Rammig FJ (eds) Software technologies for embedded and ubiquitous systems. Lecture Notes in Computer Science. Springer, Berlin, pp 436–445. https://doi.org/10.1007/978-3-540-75664-4_46

    Chapter  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors of this work participate equally to produce the paper.

Corresponding author

Correspondence to Youssef Baddi.

Ethics declarations

Conflict of interest

Not applicable.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baddi, Y., Sebbar, A., Zkik, K. et al. MSDN-IoT multicast group communication in IoT based on software defined networking. J Reliable Intell Environ 10, 93–104 (2024). https://doi.org/10.1007/s40860-023-00203-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40860-023-00203-x

Keywords

Navigation