Skip to main content

Advertisement

Log in

On the discovery of spatial-temporal fluctuating patterns

  • Regular Paper
  • Published:
International Journal of Data Science and Analytics Aims and scope Submit manuscript

Abstract

In this paper, we explore a new mining paradigm, called spatial-temporal fluctuating patterns (abbreviated as STFs), to discover potentially fluctuating and useful feature sets from the spatial-temporal data. These feature sets have some properties which are variant as time advances. Once STFs are discovered, we can find the turning points of patterns, which enables anomaly detection and transformation discovery over time. For example, the discovery of STFs can possibly figure out the phenomenon of virus variation during the epidemic outbreak, further providing the government with clues for the epidemic control. Therefore, we develop a union-based mining with the downward-closure structure to speed up the spatial-temporal mining process and dynamically compute fluctuating patterns. As shown in our experimental studies, the proposed framework can efficiently discover STFs on a real epidemic disease dataset, showing its prominent advantages to be utilized in real applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Notes

  1. Please refer to https://www.denvergov.org/opendata/dataset/city-and-county-of-denver-crime for a catalog of open data in Denver, CO, US.

References

  1. Aggarwal, C.C., Han, J.: Frequent Pattern Mining. Springer, Berlin (2014)

    Book  MATH  Google Scholar 

  2. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: VLDB (1994)

  3. Almanie, T., Mirza, R., Lor, E.: Crime prediction based on crime types and using spatial and temporal criminal hotspots. Int. J. Data Min. Knowl. Manag. Process (2015)

  4. Alves, R., Belo, O., Ribeiro, J.: Mining top-k multidimensional gradients. In: DaWaK (2007)

  5. Alves, R., Ribeiro, J., Belo, O.: Mining significant change patterns in multidimensional spaces. Int. J. Bus. Intell. Data Min. 4, 219–241 (2009)

    Article  Google Scholar 

  6. Andrienko, G., Malerba, D., May, M., Teisseire, M.: Mining spatio-temporal data. J. Intell. Inf. Syst. 27(3), 187–190 (2006)

    Article  Google Scholar 

  7. Béchet, N., Cellier, P., Charnois, T., Crémilleux, B., Jaulent, M.: Sequential pattern mining to discover relations between genes and rare diseases. In: CBMS (2012)

  8. Bergroth, L., Hakonen, H., Raita, T.: A survey of longest common subsequence algorithms. In: SPIRE (2000)

  9. Birant, D., Kut, A.: ST-DBSCAN: an algorithm for clustering spatial-temporal data. Data Knowl. Eng. 60(1), 208–221 (2007)

    Article  Google Scholar 

  10. Bittner, T.: Rough sets in spatio-temporal data mining. In: Proceedings of Temporal, Spatial, and Spatio-Temporal Data Mining (2000)

  11. Chen, H., Chung, W., Xu, J.J., Wang, G., Qin, Y., Chau, M.: Crime data mining: a general framework and some examples. Computer 37, 50–56 (2004)

    Article  Google Scholar 

  12. Deza, M.M., Deza, E.: Encyclopedia of Distances. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  13. Gaber, M.M., Zaslavsky, A., Krishnaswamy, S.: Mining data streams: a review. ACM Sigmod Rec. 34, 18–26 (2005)

    Article  MATH  Google Scholar 

  14. Ganguly, A.R., Steinhaeuser, K.: Data mining for climate change and impacts. In: Proceedings of IEEE International Conference on Data Mining Workshops (2008)

  15. Giannotti, F., Nanni, M., Pinelli, F., Pedreschi, D.: Trajectory pattern mining. In: SIGKDD (2007)

  16. Gudmundsson, J., van Kreveld, M.: Computing longest duration flocks in spatio-temporal data. Manuscript, April (2006)

  17. Hengl, T., Heuvelink, G.B., Tadić, M.P., Pebesma, E.J.: Spatio-temporal prediction of daily temperatures using time-series of MODIS LST images. Theor. Appl. Climatol. 107, 265–277 (2012)

    Article  Google Scholar 

  18. Ho, C., Li, H., Kuo, F., Lee, S.: Incremental mining of sequential patterns over a stream sliding window. In: Workshops Proceedings of ICDM (2006)

  19. Hora, A.C., Anquetil, N., Ducasse, S., . Valente, M. T.: Mining system specific rules from change patterns. In: WCRE (2013)

  20. Jeung, H., Yiu, M. L., Zhou, X., Jensen, C.S., Shen, H.T.: Discovery of convoys in trajectory databases. In: PVLDB (2008)

  21. Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 7, 881–892 (2002)

    Article  MATH  Google Scholar 

  22. Li, I., Huang, J., Liao, I.: Mining sequential pattern changes. J. Inf. Sci. Eng. 30, 973–990 (2014)

    Google Scholar 

  23. Li, Z., Ding, B., Han, J., Kays, R.: Swarm: mining relaxed temporal moving object clusters. In: PVLDB (2010)

  24. Liu, B., Hsu, W., Han, H., Xia, Y.: Mining changes for real-life applications. In: DaWaK (2000)

  25. Liu, Y., Zhao, Y., Chen, L., Pei, J., Han, J.: Mining frequent trajectory patterns for activity monitoring using radio frequency tag arrays. IEEE Trans. Parallel Distrib. Syst. 23, 2138–2149 (2012)

    Article  Google Scholar 

  26. Lo, D., Ramalingam, G., Ranganath, V.P., Vaswani, K.: Mining quantified temporal rules: formalism, algorithms, and evaluation. Sci. Comput. Program. 77, 743–759 (2012)

    Article  MATH  Google Scholar 

  27. Mennis, J.L., Liu, J.W.: Mining association rules in spatio-temporal data: an analysis of urban socioeconomic and land cover change. Trans. GIS 9, 5–17 (2005)

    Article  Google Scholar 

  28. Rao, K.V., Govardhan, A., Rao, K.C.: Spatiotemporal data mining: issues, tasks and applications. Int. J. Comput. Sci. Eng. Surv. 3, 39 (2012)

    Article  Google Scholar 

  29. Reynolds, D.: Gaussian mixture models. In: Li, Stan Z., Jain, Anil (eds.) Encyclopedia of Biometrics. Springer, Boston (2015)

    Google Scholar 

  30. Rokach, L., Maimon, O.: Clustering methods. In: Rokach, L., Maimon, O. (eds.) Data Mining and Knowledge Discovery Handbook. Springer, New York (2005)

    Google Scholar 

  31. Scellato, S., Musolesi, M., Mascolo, C., Latora, V., Campbell A.T.: Nextplace: a spatio-temporal prediction framework for pervasive systems. In: Pervasive (2011)

  32. Shin, J., Shin, D., Shin, D.: Predicting of abnormal behavior using hierarchical Markov model based on user profile in ubiquitous environment. In: GPC (2013)

  33. Teng, S.-Y., Ou, C.-K., Chuang, K.-T.: Mining temporal fluctuating patterns. In: PAKDD (2017)

  34. Trasarti, R., Pinelli, F., Nanni, M., Giannotti, F.: Mining mobility user profiles for car pooling. In: Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2011)

  35. Tsai, C., Shieh, Y.: A change detection method for sequential patterns. Decis. Support Syst. 46, 501–511 (2009)

    Article  Google Scholar 

  36. Verhein, F., Chawla, S.: Mining spatio-temporal association rules, sources, sinks, stationary regions and thoroughfares in object mobility databases. In: Database Systems for Advanced Applications (2006)

  37. Yang, D., Rundensteiner, E.A., Ward, M.O.: Shared execution strategy for neighbor-based pattern mining requests over streaming windows. ACM Trans. Database Syst. 37, 5 (2012)

    Article  Google Scholar 

  38. Yu, J., Ku, W.-S., Sun, M.-T., Lu, H.: An RFID and particle filter-based indoor spatial query evaluation system. In: EDBT (2013)

Download references

Acknowledgements

This work was supported in part by Ministry of Science and Technology, R.O.C., under Contract 107-2221-E-006 -165-MY2, 107-2218-E-006-040 and 107-2321-B-006-017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun-Ta Chuang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teng, SY., Ou, CK. & Chuang, KT. On the discovery of spatial-temporal fluctuating patterns. Int J Data Sci Anal 8, 57–75 (2019). https://doi.org/10.1007/s41060-018-0159-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41060-018-0159-1

Keywords