Skip to main content

Advertisement

Log in

Interactive planning of revisiting-free itinerary for signed-for delivery

  • Regular Paper
  • Published:
International Journal of Data Science and Analytics Aims and scope Submit manuscript

Abstract

The trend of online shopping has given rise to the growth of signed-for delivery services. Signed-for delivery is a reliable way of getting proof of delivery that ensures your parcel must be signed for upon its arrival with the recipient. However, due to the unknown of recipient occupancy, general signed-for delivery is not very effective for delivery drivers. Once the recipients are not available upon drivers’ arrival, drivers have to arrange revisiting the recipients, causing the resource waste and being overworked. In this paper, we address an important issue on the revisiting-free itinerary planning and propose a novel interactive planning system, called COKI, to interactively plan the effective delivery itineraries with a round-by-round strategy. The flow enables delivery drivers to take a shorter itinerary without revisiting any recipient. Our experimental studies on real data show that, without properly considering the issues in revisiting-free paradigm, the extension of state-of-the-art routing algorithms can only achieve sub-optimal results. Furthermore, the COKI framework can efficiently discover better revisiting-free itinerary for signed-for delivery in an interactive fashion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. Please refer to http://rossa-prod-ap11.ethz.ch/delivery/DeliveryManagerServlet?dps_pid=IE594964 for the electricity consumption data.

  2. Please refer to https://figshare.com/articles/Urban_Road_Network_Data/2061897 for the urban road network data.

References

  1. Google or-tools https://developers.google.com/optimization

  2. Abou-Rjeili, A., Karypis, G.: Multilevel algorithms for partitioning power-law graphs. In: Proceedings of the IEEE International Parallel and Distributed Processing Symposium (2006)

  3. Alabas-Uslu, C., Dengiz, B.: A self-adaptive local search algorithm for the classical vehicle routing problem. Expert Syst. Appl. 38(7), 8990–8998 (2011)

    Article  Google Scholar 

  4. Arora, S.: Polynomial time approximation schemes for euclidean tsp and other geometric problems. In: Proceedings of Conference on Foundations of Computer Science, pp. 2–11 (1996)

  5. Battarra, M., Erdoǧan, G., Laporte, G., Vigo, D.: The traveling salesman problem with pickups, deliveries, and handling costs. Transp. Sci. 44(3), 383–399 (2010)

    Article  MATH  Google Scholar 

  6. Bentley, J.J.: Fast algorithms for geometric traveling salesman problems. ORSA J. Comput. 4(4), 387–411 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chiu, Y.-P., Lo, S.-K., Hsieh, A.-Y., Hwang, Y.: Exploring why people spend more time shopping online than in offline stores. Comput. Hum. Behav. 95, 24–30 (2019)

    Article  Google Scholar 

  8. Deng, Y., Chen, Y., Zhang, Y., Mahadevan, S.: Fuzzy Dijkstra algorithm for shortest path problem under uncertain environment. Appl. Soft Comput. 12(3), 1231–1237 (2012)

    Article  Google Scholar 

  9. Dong, X., Cai, Y.: A novel genetic algorithm for large scale colored balanced traveling salesman problem. Fut. Gen. Comput. Syst. 95, 727–742 (2019)

    Article  Google Scholar 

  10. Efthymiadis, K., Kudenko, D.: Knowledge revision for reinforcement learning with abstract mdps. In: Proceedings of International Conference on Autonomous Agents and Multiagent Systems, pp. 763–770 (2015)

  11. Ezhilarasi, G.A., Swarup, K.: Network decomposition using Kernighan-Lin strategy aided harmony search algorithm. Swarm Evol. Comput. 7, 1–6 (2012)

    Article  Google Scholar 

  12. Fiosina, J., Fiosins, M.: Selecting the shortest itinerary in a cloud-based distributed mobility network. In: Proceedings of International Conference Distributed Computing and Artificial Intelligence, pp. 103–110 (2013)

  13. Freund, Y., Mason, L.: The alternating decision tree learning algorithm. In: Proceedings of International Conference on Machine Learning, volume 99, pp. 124–133 (1999)

  14. Garcia, F. M., Thomas, P. S.: A meta-mdp approach to exploration for lifelong reinforcement learning. In: Proceedings of International Conference on Autonomous Agents and MultiAgent Systems, pp. 1976–1978 (2019)

  15. Glover, F., Gutin, G., Yeo, A., Zverovich, A.: Construction heuristics for the asymmetric tsp. Eur. J. Oper. Res. 129(3), 555–568 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gutin, G., Yeo, A.: The greedy algorithm for the symmetric tsp. Algorithmic Oper. Res. 2(1), 1 (2007)

    MathSciNet  MATH  Google Scholar 

  17. Hasselt, H. V.: Double q-learning. In: Proceedings of Advances in Neural Information Processing Systems, pp. 2613–2621 (2010)

  18. Hernández-Pérez, H., Salazar-González, J.-J.: The multi-commodity one-to-one pickup-and-delivery traveling salesman problem. Eur. J. Oper. Res. 196(3), 987–995 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Huang, R.: Ecommerce in rural areas and environmental sustainability: The last-mile delivery. In: Proceedings of Wuhan International Conference on E-Business, pp. 50 (2017)

  20. Johannsen, F., Leist, S., Konadl, D., Basche, M., de Hesselle, B.: Comparison of commercial chatbot solutions for supporting customer interaction. In: Proceedings of European Conference on Information Systems: Beyond Digitization—Facets of Socio-Technical Change, pp. 158–174 (2018)

  21. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell Syst. Tech. J. 49(2), 291–307 (1970)

    Article  MATH  Google Scholar 

  23. Kiselev, I., Glaschenko, A., Chevelev, A., Skobelev, P.: Towards an adaptive approach for distributed resource allocation in a multi-agent system for solving dynamic vehicle routing problems. In: Proceedings of AAAI Conference on Artificial Intelligence, pp. 1874–1875 (2007)

  24. Kleiminger, W., Beckel, C., Staake, T., Santini, S.: Occupancy detection from electricity consumption data. In: Proceedings of ACM Workshop on Embedded Systems For Energy-Efficient Buildings, pp. 1–8 (2013)

  25. Kool, W., van Hoof, H., Welling, M.: Attention, learn to solve routing problems! In: ICLR (2019)

  26. Krening, S., Feigh, K. M.: Effect of interaction design on the human experience with interactive reinforcement learning. In: Proceedings of Conference on Designing Interactive Systems, pp. 1089–1100. ACM (2019)

  27. Kröse, B.J.A.: Learning from delayed rewards. Robot. Auton. Syst. 15(4), 233–235 (1995)

    Article  Google Scholar 

  28. Kuan, C.-P., Young, K.-Y.: Reinforcement learning and robust control for robot compliance tasks. J. Intell. Robot. Syst. 23(2–4), 165–182 (1998)

    Article  MATH  Google Scholar 

  29. Laporte, G., Martello, S.: The selective travelling salesman problem. Discret. Appl. Math. 26(2–3), 193–207 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  30. Laporte, G., Toth, P., Vigo, D.: Vehicle Routing: Historical Perspective and Recent Contributions (2013)

  31. Lawler, E. L., Lenstra, J. K., Kan, A. R., Shmoys, D. B. et al.: The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization (1985)

  32. Lee, K. C., Lee, W.-C., Zheng, B.: Fast object search on road networks. In: Proceedings of International Conference on Extending Database Technology: Advances in Database Technology, pp. 1018–1029 (2009)

  33. Li, J., Du, J., Li, L.: Optimization of vehicle routing problem with fatigue driving based on genetic algorithm. In: Proceedings of Conference on Research in Adaptive and Convergent Systems, pp. 37–42 (2018)

  34. Liaw, A., Wiener, M., et al.: Classification and regression by randomforest. R News 2(3), 18–22 (2002)

    Google Scholar 

  35. Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling-salesman problem. Oper. Res. 21(2), 498–516 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lo, K.M., Yi, W., Wong, P.-K., Leung, K.-S., Leung, Y., Mak, T.S.T.: A genetic algorithm with new local operators for multiple traveling salesman problems. Int. J. Comput. Intell. Syst. 11, 692–705 (2018)

    Article  Google Scholar 

  37. M. of Economy Trade and Industry. Social loss caused from parcel redelivery. Agency for Natural Resources and Energy (2015)

  38. Ohsugi, S., Koshizuka, N.: Delivery route optimization through occupancy prediction from electricity usage. In: Proceedings of Annual Computer Software and Applications Conference, Vol. 1, pp. 842–849 (2018)

  39. Pan, G., Li, K., Ouyang, A., Li, K.: Hybrid immune algorithm based on greedy algorithm and delete-cross operator for solving tsp. Soft Comput. 20, 555–566 (2016)

    Article  Google Scholar 

  40. Paul, P.V., Ganeshkumar, C., Ponnurangam, D., Baskaran, R.: A novel odv crossover operator-based genetic algorithms for traveling salesman problem. Soft Comput. 1, 1–31 (2020)

    Google Scholar 

  41. Probst, P.: Hyperparameters, tuning and meta-learning for random forest and other machine learning algorithms. PhD thesis (2019)

  42. Semet, F., Toth, P., Vigo, D.: Classical exact algorithms for the capacitated vehicle routing problem. In: Vehicle Routing, pp. 37–57 (2014)

  43. Soylu, B.: A general variable neighborhood search heuristic for multiple traveling salesmen problem. Comput. Ind. Eng. 90, 390–401 (2015)

    Article  Google Scholar 

  44. Su, J.-r.: Improved particle swarm optimization for multi-object traveling salesman problems. In: Proceedings of International Conference on Natural Computation, pp. 1175–1179 (2011)

  45. Sutton, R. S., Barto, A. G.: Reinforcement learning: An introduction. Adaptive computation and machine learning. (1998)

  46. Suykens, J.A., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9(3), 293–300 (1999)

    Article  Google Scholar 

  47. Teng, S.-Y., Wu, S.-C., Chuang, K.-T.: Optimal delivery routing in road network with occupancy detection. In: Proceedings of International Conference on Mobile Data Management (MDM), pp. 575–580 (2019)

  48. Van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double q-learning. In Proceedings of of AAAI Conference on Artificial Intelligence, pp. 2094–2100 (2016)

  49. Wang, C., Lin, M., Zhong, Y., Zhang, H.: Solving travelling salesman problem using multiagent simulated annealing algorithm with instance-based sampling. Int. J. Comput. Sci. Math. 6(4), 336–353 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  50. Wang, C., Lin, M., Zhong, Y., Zhang, H.: Swarm simulated annealing algorithm with knowledge-based sampling for travelling salesman problem. Int. J. Intell. Syst. Technol. Appl. 15, 74–94 (2016)

    Google Scholar 

  51. Wei, L., Zhang, Z., Zhang, D., Leung, S.C.: A simulated annealing algorithm for the capacitated vehicle routing problem with two-dimensional loading constraints. Eur. J. Oper. Res. 265(3), 843–859 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  52. Xu, D., Weise, T., Wu, Y., Lässig, J., Chiong, R.: An investigation of hybrid tabu search for the traveling salesman problem. In: Proceedings of International on Bio-Inspired Computing-Theories and Applications, pp. 523–537. Springer (2015)

  53. Xu, Z., Rodrigues, B.: An extension of the christofides heuristic for the generalized multiple depot multiple traveling salesmen problem. Eur. J. Oper. Res. 257(3), 735–745 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Ministry of Science and Technology, R.O.C., under Contract 109-2221-E-006-187-MY3, 110-2221-E-006-001 and 111AT16B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun-Ta Chuang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ting, L.PY., Teng, SY., Wu, SC. et al. Interactive planning of revisiting-free itinerary for signed-for delivery. Int J Data Sci Anal 14, 439–456 (2022). https://doi.org/10.1007/s41060-022-00333-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41060-022-00333-0

Keywords