Abstract
Users’ similarity plays a crucial role in the Collaborative Filtering (CF)-based Recommendation Systems (RS). The CF uses a user-item matrix to estimate this similarity. However, the user-item matrix-based similarity performs poorly during cold-start and temporal variations in users’ behavior. To overcome this limitation in this paper, a combined static and temporal similarity- based CF is presented, which estimates the final ratings using a weighted sum of four independent ratings. The first rating is estimated through the similarity estimated using the Affinity Propagation (AP) applied to a reduced rank coefficient matrix generated by factorizing the user-item rating matrix using Weighted Nonnegative Matrix Factorization (WNMF). The remaining three ratings are estimated by employing graph-based similarity measures on bipartite graphs made between the user and their static (age and occupation), and temporal (purchasing pattern) characteristics. Finally, the performance of the proposed algorithm is evaluated using the MovieLens1M and Ta-Feng grocery datasets under different scenarios. The results show that the proposed approach not only outperforms the traditional techniques but also outperforms the Google Wide & Deep and CoupledCF models by 22.52, 2.06, and 11.26, \(2.75\%\) for Hit Ratio (HR) and Normalized Discounted Cumulative Gain (NDCG), respectively.





Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Shams, B., Haratizadeh, S.: Graph-based collaborative ranking. Expert Syst. Appl. 67, 59–70 (2017). https://doi.org/10.1016/j.eswa.2016.09.013
Bobadilla, J., Ortega, F., Hernando, A., Gutiérrez, A.: Recommender systems survey. Knowl.-Based Syst. 46, 109–132 (2013). https://doi.org/10.1016/j.knosys.2013.03.012
Shi, Y., Larson, M., Hanjalic, A.: Unifying rating-oriented and ranking-oriented collaborative filtering for improved recommendation. Inf. Sci. 229, 29–39 (2013). https://doi.org/10.1016/j.ins.2012.12.002
Kluver, D., Ekstrand, M.D., Konstan, J.A.: Rating-Based Collaborative Filtering: Algorithms and Evaluation. In: P. Brusilovsky, D. He (Eds.) Social Information Access: Systems and Technologies, Lecture Notes in Computer Science, pp. 344–390. Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-90092-6_10
Elachkar, I., Ouzif, H., Labriji, H.: Structual Similarity Measure of Users Profiles Based on a Weighted Bipartite Graphs. In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLIV-4-W3-2020, pp. 203–207. Copernicus GmbH (2020). doi: https://doi.org/10.5194/isprs-archives-XLIV-4-W3-2020-203-2020
Yu, H.F., Hsieh, C.J., Si, S., Dhillon, I.S.: Parallel matrix factorization for recommender systems. Knowl. Inf. Syst. 41(3), 793–819 (2014). https://doi.org/10.1007/s10115-013-0682-2
Cheng, J., Liu, Y., Zhang, H., Wu, X., Chen, F.: A new recommendation algorithm based on user’s dynamic information in complex social network. Math. Probl. Eng. 2015, 281629 (2015). https://doi.org/10.1155/2015/281629
Tan, Q., Liu, F.: Recommendation based on Users’ long-term and short-term interests with attention. Math. Probl. Eng. 2019, 7586589 (2019). https://doi.org/10.1155/2019/7586589
Non-Negative Matrix Factorization Algorithms and Applications, John Wiley & Sons, Singapore, pp. 245–311. (2014). https://doi.org/10.1002/9781118679852.ch15
Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science (2007). https://doi.org/10.1126/science.1136800
Goldberg, D., Nichols, D., Oki, B.M., Terry, D.: Using collaborative filtering to weave an information tapestry. Commun. ACM 35(12), 61–70 (1992). https://doi.org/10.1145/138859.138867
Wang, Z., Yu, X., Feng, N., Wang, Z.: An improved collaborative movie recommendation system using computational intelligence. J. Visual Lang. Comput. 25(6), 667–675 (2014). https://doi.org/10.1016/j.jvlc.2014.09.011
Mustafa, N., Ibrahim, A.O., Ahmed, A., Abdullah, A.: Collaborative filtering: Techniques and applications. In: 2017 International Conference on Communication, Control, Computing and Electronics Engineering (ICCCCEE), pp. 1–6 (2017). doi: https://doi.org/10.1109/ICCCCEE.2017.7867668
Chae, D.K., Lee, S.C., Lee, S.Y., Kim, S.W.: On identifying k-nearest neighbors in neighborhood models for efficient and effective collaborative filtering. Neurocomputing 278, 134–143 (2018). https://doi.org/10.1016/j.neucom.2017.06.081
Koohi, H., Kiani, K.: User based collaborative filtering using fuzzy C-means. Measurement 91, 134–139 (2016). https://doi.org/10.1016/j.measurement.2016.05.058
Aditya, P.H., Budi, I., Munajat, Q.: A comparative analysis of memory-based and model-based collaborative filtering on the implementation of recommender system for E-commerce in Indonesia: A case study PT X. In: 2016 International Conference on Advanced Computer Science and Information Systems (ICACSIS), pp. 303–308 (2016). doi: https://doi.org/10.1109/ICACSIS.2016.7872755
Ali, S.M., Nayak, G.K., Lenka, R.K., Barik, R.K.: Movie recommendation system using genome tags and content-based filtering. In: M.L. Kolhe, M.C. Trivedi, S. Tiwari, V.K. Singh (Eds.) Advances in Data and Information Sciences, Lecture Notes in Networks and Systems, pp. 85–94. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-8360-0_8
Wang, S., Cao, L., Hu, L., Berkovsky, S., Huang, X., Xiao, L., Lu, W.: Hierarchical attentive transaction embedding with intra- and inter-transaction dependencies for next-item recommendation. IEEE Intell. Syst. 36(4), 56–64 (2021). https://doi.org/10.1109/MIS.2020.2997362
Zhang, S., Yao, L., Sun, A., Tay, Y.: Deep learning based recommender system: A survey and new perspectives. ACM Comput. Surveys 52(1), 1–38 (2020). https://doi.org/10.1145/3285029
Guo, H., Tang, R., Ye, Y., Li, Z., He, X.: DeepFM: A factorization-machine based neural network for CTR prediction. arXiv:1703.04247 [cs] (2017). ArXiv: 1703.04247
Lu, W., Yu, Y., Chang, Y., Wang, Z., Li, C., Yuan, B.: A dual input-aware factorization machine for CTR prediction. In: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, pp. 3139–3145. International Joint Conferences on Artificial Intelligence Organization, Yokohama, Japan (2020). doi: https://doi.org/10.24963/ijcai.2020/434
Cheng, H.T., Koc, L., Harmsen, J., Shaked, T., Chandra, T., Aradhye, H., Anderson, G., Corrado, G., Chai, W., Ispir, M., Anil, R., Haque, Z., Hong, L., Jain, V., Liu, X., Shah, H.: Wide & Deep learning for recommender systems. In: Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, DLRS 2016, pp. 7–10. Association for Computing Machinery, New York, NY, USA (2016). https://doi.org/10.1145/2988450.2988454
Zhang, Q., Cao, L., Zhu, C., Li, Z., Sun, J.: CoupledCF: Learning explicit and implicit user-item couplings in recommendation for deep collaborative filtering. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, pp. 3662–3668. International Joint Conferences on Artificial Intelligence Organization, Stockholm, Sweden (2018). https://doi.org/10.24963/ijcai.2018/509
Tay, Y., Luu, A.T., Hui, S.C.: Latent relational metric learning via memory-based attention for collaborative ranking. In: Proceedings of the 2018 World Wide Web Conference on World Wide Web - WWW ’18 pp. 729–739 (2018). https://doi.org/10.1145/3178876.3186154. ArXiv:1707.05176
Zhang, Y., Bai, G., Zhong, M., Li, X., Ko, R.K.L.: Differentially private collaborative coupling learning for recommender systems. IEEE Intell. Syst. 36(1), 16–24 (2021). https://doi.org/10.1109/MIS.2020.3005930.
Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009). https://doi.org/10.1109/MC.2009.263
Mehta, R., Rana, K.: A review on matrix factorization techniques in recommender systems. In: 2017 2nd International Conference on Communication Systems, Computing and IT Applications (CSCITA), pp. 269–274 (2017). doi: https://doi.org/10.1109/CSCITA.2017.8066567
Sunitha Reddy, M., Adilakshmi, T.: Music recommendation system based on matrix factorization technique -SVD. In: 2014 International Conference on Computer Communication and Informatics, pp. 1–6 (2014). doi: https://doi.org/10.1109/ICCCI.2014.6921744
Yi, H., Niu, Z., Zhang, F., Li, X., Wang, Y.: Robust recommendation algorithm Based on kernel principal component analysis and Fuzzy C-means clustering. Wuhan Univ. J. Nat. Sci. 23(2), 111–119 (2018). https://doi.org/10.1007/s11859-018-1301-6
Ma, H., Yang, H., Lyu, M.R., King, I.: SoRec: Social recommendation using probabilistic matrix factorization. In: Proceedings of the 17th ACM conference on Information and knowledge management, CIKM ’08, pp. 931–940. Association for Computing Machinery, New York, NY, USA (2008). https://doi.org/10.1145/1458082.1458205
Liu, J., Wu, C., Liu, W.: Bayesian probabilistic matrix factorization with social relations and item contents for recommendation. Decis. Support Syst. 55(3), 838–850 (2013). https://doi.org/10.1016/j.dss.2013.04.002
Luo, X., Zhou, M., Xia, Y., Zhu, Q.: An efficient non-negative matrix-factorization-based approach to collaborative filtering for recommender systems. IEEE Trans. Ind. Inf. 10(2), 1273–1284 (2014). https://doi.org/10.1109/TII.2014.2308433
Takács, G., Tikk, D.: Alternating least squares for personalized ranking. In: Proceedings of the sixth ACM conference on Recommender systems, RecSys ’12, pp. 83–90. Association for Computing Machinery, New York, NY, USA (2012). doi: https://doi.org/10.1145/2365952.2365972
Bottou, L.: Stochastic gradient descent tricks. In: G. Montavon, G.B. Orr, K.R. Müller (Eds.) Neural Networks: Tricks of the Trade: Second Edition, Lecture Notes in Computer Science, pp. 421–436. Springer, Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35289-8_25
Dror, G., Koenigstein, N., Koren, Y., Weimer, M.: The Yahoo! Music Dataset and KDD-Cup’11. In: Proceedings of KDD Cup 2011, pp. 3–18. PMLR (2012). ISSN: 1938-7228
Zhou, Y., Wilkinson, D., Schreiber, R., Pan, R.: Large-scale parallel collaborative filtering for the Netflix prize. In: R. Fleischer, J. Xu (eds.) Algorithmic Aspects in Information and Management, Lecture Notes in Computer Science, pp. 337–348. Springer, Berlin, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68880-8_32
Feng, L., Wei, H., Guo, Q., Lin, Z., An, B.: Embedding-augmented generalized matrix factorization for recommendation with implicit feedback. IEEE Intell. Syst. 36(6), 32–41 (2021). https://doi.org/10.1109/MIS.2020.3036136
Li, F., Xu, G., Cao, L.: Coupled matrix factorization within Non-IID Context. arXiv:1404.7467 [cs] (2014)
Ahn, H.J.: A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem. Inf. Sci. 178(1), 37–51 (2008). https://doi.org/10.1016/j.ins.2007.07.024
Mahara, T.: A new similarity measure based on mean measure of divergence for collaborative filtering in sparse environment. Proc. Comput. Sci. 89, 450–456 (2016). https://doi.org/10.1016/j.procs.2016.06.099
Bobadilla, J., Serradilla, F., Bernal, J.: A new collaborative filtering metric that improves the behavior of recommender systems. Knowl.-Based Syst. 23(6), 520–528 (2010). https://doi.org/10.1016/j.knosys.2010.03.009
Bobadilla, J., Ortega, F., Hernando, A., Bernal, J.: A collaborative filtering approach to mitigate the new user cold start problem. Knowl.-Based Syst. 26, 225–238 (2012). https://doi.org/10.1016/j.knosys.2011.07.021
Choi, K., Suh, Y.: A new similarity function for selecting neighbors for each target item in collaborative filtering. Knowl.-Based Syst. 37, 146–153 (2013). https://doi.org/10.1016/j.knosys.2012.07.019
Jeong, B., Lee, J., Cho, H.: Improving memory-based collaborative filtering via similarity updating and prediction modulation. Inf. Sci. 180(5), 602–612 (2010). https://doi.org/10.1016/j.ins.2009.10.016
Yan, C., Ding, A., Zhang, Y., Wang, Z.: Learning fashion similarity based on hierarchical attribute embedding. In: 2021 IEEE 8th International Conference on Data Science and Advanced Analytics (DSAA), pp. 1–8 (2021). https://doi.org/10.1109/DSAA53316.2021.9564236
Unnikrishnan, V., Beyer, C., Matuszyk, P., Niemann, U., Pryss, R., Schlee, W., Ntoutsi, E., Spiliopoulou, M.: Entity-level stream classification: Exploiting entity similarity to label the future observations referring to an entity. Int. J. Data Sci. Anal. 9(1), 1–15 (2020). https://doi.org/10.1007/s41060-019-00177-1
Wen, W., Zeng, D.D., Bai, J., Zhao, K., Li, Z.: Learning embeddings based on global structural similarity in heterogeneous networks. IEEE Intell. Syst. 36(6), 13–22 (2021). https://doi.org/10.1109/MIS.2020.3027677
Li, Z., Ling, F., Zhang, C.: Cross-media image-text retrieval combined with global similarity and local similarity. In: 2019 IEEE International Conference on Data Science and Advanced Analytics (DSAA), pp. 145–153 (2019). https://doi.org/10.1109/DSAA.2019.00029
Fan, W., Ma, Y., Li, Q., He, Y., Zhao, E., Tang, J., Yin, D.: Graph neural networks for social recommendation. arXiv:1902.07243 [cs] (2019)
Li, X., Chen, H.: Recommendation as link prediction in bipartite graphs: A graph kernel-based machine learning approach. Decis. Support Syst. 54(2), 880–890 (2013). https://doi.org/10.1016/j.dss.2012.09.019
Palumbo, E., Rizzo, G., Troncy, R.: entity2rec: Learning user-item relatedness from knowledge graphs for Top-N Item recommendation. In: Proceedings of the Eleventh ACM Conference on Recommender Systems, pp. 32–36. ACM, Como Italy (2017). https://doi.org/10.1145/3109859.3109889
Wang, S., Hu, L., Wang, Y., He, X., Sheng, Q.Z., Orgun, M., Cao, L., Wang, N., Ricci, F., Yu, P.S.: Graph learning approaches to recommender systems: A review. arXiv:2004.11718 [cs] (2020)
Verma, J., Gupta, S., Mukherjee, D., Chakraborty, T.: Heterogeneous edge embeddings for friend recommendation. arXiv:1902.03124 [cs, stat] (2019)
Cen, Y., Zou, X., Zhang, J., Yang, H., Zhou, J., Tang, J.: representation learning for attributed multiplex heterogeneous network. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining pp. 1358–1368 (2019). https://doi.org/10.1145/3292500.3330964. ArXiv:1905.01669
Guo, Q., Zhuang, F., Qin, C., Zhu, H., Xie, X., Xiong, H., He, Q.: A survey on knowledge graph-based recommender systems. IEEE Trans. Knowl. Data Eng. (2020). https://doi.org/10.1109/TKDE.2020.3028705
Li, Y., Ngom, A.: The non-negative matrix factorization toolbox for biological data mining. Source Code Biol. Med. 8(1), 10 (2013). https://doi.org/10.1186/1751-0473-8-10
Dueck, D.: Affinity propagation: Clustering data by passing messages (2009)
Li, B., Han, L.: Distance weighted cosine similarity measure for text classification. In: Proceedings of the 14th International Conference on Intelligent Data Engineering and Automated Learning — IDEAL 2013 - Volume 8206, IDEAL 2013, pp. 611–618. Springer-Verlag, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41278-3_74
Kim, T.H., Ryu, Y.S., Park, S.I., Yang, S.B.: An improved recommendation algorithm in collaborative filtering. In: K. Bauknecht, A.M. Tjoa, G. Quirchmayr (Eds.) E-Commerce and Web Technologies, Lecture Notes in Computer Science, pp. 254–261. Springer, Berlin, Heidelberg (2002). https://doi.org/10.1007/3-540-45705-4_27
Chai, T., Draxler, R.R.: Root mean square error (RMSE) or mean absolute error (MAE)? Preprint. Numerical Methods (2014). https://doi.org/10.5194/gmdd-7-1525-2014
He, X., Chen, T., Kan, M.Y., Chen, X.: TriRank: Review-aware explainable recommendation by modeling aspects. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp. 1661–1670. ACM, Melbourne Australia (2015). https://doi.org/10.1145/2806416.2806504
Harper, F.M., Konstan, J.A.: The MovieLens datasets: History and context. ACM Trans. Int. Intell. Syst. 5(4), 1–19 (2015). https://doi.org/10.1145/2827872
Ta Feng grocery dataset. https://www.kaggle.com/chiranjivdas09/ta-feng-grocery-dataset
Ziegler, C.N., McNee, S.M., Konstan, J.A., Lausen, G.: Improving recommendation lists through topic diversification. In: Proceedings of the 14th International Conference on World Wide Web, WWW ’05, pp. 22–32. Association for Computing Machinery, New York, NY, USA (2005). https://doi.org/10.1145/1060745.1060754
Bennett, J., Lanning, S., Netflix, N.: The Netflix Prize. In: In KDD Cup and Workshop in conjunction with KDD (2007)
Ni, J., Li, J., McAuley, J.: Justifying Recommendations using Distantly-Labeled Reviews and Fine-Grained Aspects. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 188–197. Association for Computational Linguistics, Hong Kong, China (2019). doi: https://doi.org/10.18653/v1/D19-1018
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
On behalf of all authors, the corresponding author states that there is no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Gupta, A., Shrinath, P. A novel recommendation system comprising WNMF with graph-based static and temporal similarity estimators. Int J Data Sci Anal 16, 27–41 (2023). https://doi.org/10.1007/s41060-022-00355-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s41060-022-00355-8