Skip to main content
Log in

A novel recommendation system comprising WNMF with graph-based static and temporal similarity estimators

  • Regular Paper
  • Published:
International Journal of Data Science and Analytics Aims and scope Submit manuscript

Abstract

Users’ similarity plays a crucial role in the Collaborative Filtering (CF)-based Recommendation Systems (RS). The CF uses a user-item matrix to estimate this similarity. However, the user-item matrix-based similarity performs poorly during cold-start and temporal variations in users’ behavior. To overcome this limitation in this paper, a combined static and temporal similarity- based CF is presented, which estimates the final ratings using a weighted sum of four independent ratings. The first rating is estimated through the similarity estimated using the Affinity Propagation (AP) applied to a reduced rank coefficient matrix generated by factorizing the user-item rating matrix using Weighted Nonnegative Matrix Factorization (WNMF). The remaining three ratings are estimated by employing graph-based similarity measures on bipartite graphs made between the user and their static (age and occupation), and temporal (purchasing pattern) characteristics. Finally, the performance of the proposed algorithm is evaluated using the MovieLens1M and Ta-Feng grocery datasets under different scenarios. The results show that the proposed approach not only outperforms the traditional techniques but also outperforms the Google Wide & Deep and CoupledCF models by 22.52, 2.06, and 11.26, \(2.75\%\) for Hit Ratio (HR) and Normalized Discounted Cumulative Gain (NDCG), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shams, B., Haratizadeh, S.: Graph-based collaborative ranking. Expert Syst. Appl. 67, 59–70 (2017). https://doi.org/10.1016/j.eswa.2016.09.013

    Article  MATH  Google Scholar 

  2. Bobadilla, J., Ortega, F., Hernando, A., Gutiérrez, A.: Recommender systems survey. Knowl.-Based Syst. 46, 109–132 (2013). https://doi.org/10.1016/j.knosys.2013.03.012

    Article  Google Scholar 

  3. Shi, Y., Larson, M., Hanjalic, A.: Unifying rating-oriented and ranking-oriented collaborative filtering for improved recommendation. Inf. Sci. 229, 29–39 (2013). https://doi.org/10.1016/j.ins.2012.12.002

    Article  Google Scholar 

  4. Kluver, D., Ekstrand, M.D., Konstan, J.A.: Rating-Based Collaborative Filtering: Algorithms and Evaluation. In: P. Brusilovsky, D. He (Eds.) Social Information Access: Systems and Technologies, Lecture Notes in Computer Science, pp. 344–390. Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-90092-6_10

  5. Elachkar, I., Ouzif, H., Labriji, H.: Structual Similarity Measure of Users Profiles Based on a Weighted Bipartite Graphs. In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLIV-4-W3-2020, pp. 203–207. Copernicus GmbH (2020). doi: https://doi.org/10.5194/isprs-archives-XLIV-4-W3-2020-203-2020

  6. Yu, H.F., Hsieh, C.J., Si, S., Dhillon, I.S.: Parallel matrix factorization for recommender systems. Knowl. Inf. Syst. 41(3), 793–819 (2014). https://doi.org/10.1007/s10115-013-0682-2

    Article  Google Scholar 

  7. Cheng, J., Liu, Y., Zhang, H., Wu, X., Chen, F.: A new recommendation algorithm based on user’s dynamic information in complex social network. Math. Probl. Eng. 2015, 281629 (2015). https://doi.org/10.1155/2015/281629

    Article  Google Scholar 

  8. Tan, Q., Liu, F.: Recommendation based on Users’ long-term and short-term interests with attention. Math. Probl. Eng. 2019, 7586589 (2019). https://doi.org/10.1155/2019/7586589

    Article  Google Scholar 

  9. Non-Negative Matrix Factorization Algorithms and Applications, John Wiley & Sons, Singapore, pp. 245–311. (2014). https://doi.org/10.1002/9781118679852.ch15

  10. Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science (2007). https://doi.org/10.1126/science.1136800

    Article  MathSciNet  MATH  Google Scholar 

  11. Goldberg, D., Nichols, D., Oki, B.M., Terry, D.: Using collaborative filtering to weave an information tapestry. Commun. ACM 35(12), 61–70 (1992). https://doi.org/10.1145/138859.138867

    Article  Google Scholar 

  12. Wang, Z., Yu, X., Feng, N., Wang, Z.: An improved collaborative movie recommendation system using computational intelligence. J. Visual Lang. Comput. 25(6), 667–675 (2014). https://doi.org/10.1016/j.jvlc.2014.09.011

    Article  Google Scholar 

  13. Mustafa, N., Ibrahim, A.O., Ahmed, A., Abdullah, A.: Collaborative filtering: Techniques and applications. In: 2017 International Conference on Communication, Control, Computing and Electronics Engineering (ICCCCEE), pp. 1–6 (2017). doi: https://doi.org/10.1109/ICCCCEE.2017.7867668

  14. Chae, D.K., Lee, S.C., Lee, S.Y., Kim, S.W.: On identifying k-nearest neighbors in neighborhood models for efficient and effective collaborative filtering. Neurocomputing 278, 134–143 (2018). https://doi.org/10.1016/j.neucom.2017.06.081

    Article  Google Scholar 

  15. Koohi, H., Kiani, K.: User based collaborative filtering using fuzzy C-means. Measurement 91, 134–139 (2016). https://doi.org/10.1016/j.measurement.2016.05.058

    Article  Google Scholar 

  16. Aditya, P.H., Budi, I., Munajat, Q.: A comparative analysis of memory-based and model-based collaborative filtering on the implementation of recommender system for E-commerce in Indonesia: A case study PT X. In: 2016 International Conference on Advanced Computer Science and Information Systems (ICACSIS), pp. 303–308 (2016). doi: https://doi.org/10.1109/ICACSIS.2016.7872755

  17. Ali, S.M., Nayak, G.K., Lenka, R.K., Barik, R.K.: Movie recommendation system using genome tags and content-based filtering. In: M.L. Kolhe, M.C. Trivedi, S. Tiwari, V.K. Singh (Eds.) Advances in Data and Information Sciences, Lecture Notes in Networks and Systems, pp. 85–94. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-8360-0_8

  18. Wang, S., Cao, L., Hu, L., Berkovsky, S., Huang, X., Xiao, L., Lu, W.: Hierarchical attentive transaction embedding with intra- and inter-transaction dependencies for next-item recommendation. IEEE Intell. Syst. 36(4), 56–64 (2021). https://doi.org/10.1109/MIS.2020.2997362

    Article  Google Scholar 

  19. Zhang, S., Yao, L., Sun, A., Tay, Y.: Deep learning based recommender system: A survey and new perspectives. ACM Comput. Surveys 52(1), 1–38 (2020). https://doi.org/10.1145/3285029

    Article  Google Scholar 

  20. Guo, H., Tang, R., Ye, Y., Li, Z., He, X.: DeepFM: A factorization-machine based neural network for CTR prediction. arXiv:1703.04247 [cs] (2017). ArXiv: 1703.04247

  21. Lu, W., Yu, Y., Chang, Y., Wang, Z., Li, C., Yuan, B.: A dual input-aware factorization machine for CTR prediction. In: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, pp. 3139–3145. International Joint Conferences on Artificial Intelligence Organization, Yokohama, Japan (2020). doi: https://doi.org/10.24963/ijcai.2020/434

  22. Cheng, H.T., Koc, L., Harmsen, J., Shaked, T., Chandra, T., Aradhye, H., Anderson, G., Corrado, G., Chai, W., Ispir, M., Anil, R., Haque, Z., Hong, L., Jain, V., Liu, X., Shah, H.: Wide & Deep learning for recommender systems. In: Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, DLRS 2016, pp. 7–10. Association for Computing Machinery, New York, NY, USA (2016). https://doi.org/10.1145/2988450.2988454

  23. Zhang, Q., Cao, L., Zhu, C., Li, Z., Sun, J.: CoupledCF: Learning explicit and implicit user-item couplings in recommendation for deep collaborative filtering. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, pp. 3662–3668. International Joint Conferences on Artificial Intelligence Organization, Stockholm, Sweden (2018). https://doi.org/10.24963/ijcai.2018/509

  24. Tay, Y., Luu, A.T., Hui, S.C.: Latent relational metric learning via memory-based attention for collaborative ranking. In: Proceedings of the 2018 World Wide Web Conference on World Wide Web - WWW ’18 pp. 729–739 (2018). https://doi.org/10.1145/3178876.3186154. ArXiv:1707.05176

  25. Zhang, Y., Bai, G., Zhong, M., Li, X., Ko, R.K.L.: Differentially private collaborative coupling learning for recommender systems. IEEE Intell. Syst. 36(1), 16–24 (2021). https://doi.org/10.1109/MIS.2020.3005930.

  26. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009). https://doi.org/10.1109/MC.2009.263

    Article  Google Scholar 

  27. Mehta, R., Rana, K.: A review on matrix factorization techniques in recommender systems. In: 2017 2nd International Conference on Communication Systems, Computing and IT Applications (CSCITA), pp. 269–274 (2017). doi: https://doi.org/10.1109/CSCITA.2017.8066567

  28. Sunitha Reddy, M., Adilakshmi, T.: Music recommendation system based on matrix factorization technique -SVD. In: 2014 International Conference on Computer Communication and Informatics, pp. 1–6 (2014). doi: https://doi.org/10.1109/ICCCI.2014.6921744

  29. Yi, H., Niu, Z., Zhang, F., Li, X., Wang, Y.: Robust recommendation algorithm Based on kernel principal component analysis and Fuzzy C-means clustering. Wuhan Univ. J. Nat. Sci. 23(2), 111–119 (2018). https://doi.org/10.1007/s11859-018-1301-6

    Article  MathSciNet  Google Scholar 

  30. Ma, H., Yang, H., Lyu, M.R., King, I.: SoRec: Social recommendation using probabilistic matrix factorization. In: Proceedings of the 17th ACM conference on Information and knowledge management, CIKM ’08, pp. 931–940. Association for Computing Machinery, New York, NY, USA (2008). https://doi.org/10.1145/1458082.1458205

  31. Liu, J., Wu, C., Liu, W.: Bayesian probabilistic matrix factorization with social relations and item contents for recommendation. Decis. Support Syst. 55(3), 838–850 (2013). https://doi.org/10.1016/j.dss.2013.04.002

    Article  Google Scholar 

  32. Luo, X., Zhou, M., Xia, Y., Zhu, Q.: An efficient non-negative matrix-factorization-based approach to collaborative filtering for recommender systems. IEEE Trans. Ind. Inf. 10(2), 1273–1284 (2014). https://doi.org/10.1109/TII.2014.2308433

    Article  Google Scholar 

  33. Takács, G., Tikk, D.: Alternating least squares for personalized ranking. In: Proceedings of the sixth ACM conference on Recommender systems, RecSys ’12, pp. 83–90. Association for Computing Machinery, New York, NY, USA (2012). doi: https://doi.org/10.1145/2365952.2365972

  34. Bottou, L.: Stochastic gradient descent tricks. In: G. Montavon, G.B. Orr, K.R. Müller (Eds.) Neural Networks: Tricks of the Trade: Second Edition, Lecture Notes in Computer Science, pp. 421–436. Springer, Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35289-8_25

  35. Dror, G., Koenigstein, N., Koren, Y., Weimer, M.: The Yahoo! Music Dataset and KDD-Cup’11. In: Proceedings of KDD Cup 2011, pp. 3–18. PMLR (2012). ISSN: 1938-7228

  36. Zhou, Y., Wilkinson, D., Schreiber, R., Pan, R.: Large-scale parallel collaborative filtering for the Netflix prize. In: R. Fleischer, J. Xu (eds.) Algorithmic Aspects in Information and Management, Lecture Notes in Computer Science, pp. 337–348. Springer, Berlin, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68880-8_32

  37. Feng, L., Wei, H., Guo, Q., Lin, Z., An, B.: Embedding-augmented generalized matrix factorization for recommendation with implicit feedback. IEEE Intell. Syst. 36(6), 32–41 (2021). https://doi.org/10.1109/MIS.2020.3036136

    Article  Google Scholar 

  38. Li, F., Xu, G., Cao, L.: Coupled matrix factorization within Non-IID Context. arXiv:1404.7467 [cs] (2014)

  39. Ahn, H.J.: A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem. Inf. Sci. 178(1), 37–51 (2008). https://doi.org/10.1016/j.ins.2007.07.024

    Article  Google Scholar 

  40. Mahara, T.: A new similarity measure based on mean measure of divergence for collaborative filtering in sparse environment. Proc. Comput. Sci. 89, 450–456 (2016). https://doi.org/10.1016/j.procs.2016.06.099

    Article  Google Scholar 

  41. Bobadilla, J., Serradilla, F., Bernal, J.: A new collaborative filtering metric that improves the behavior of recommender systems. Knowl.-Based Syst. 23(6), 520–528 (2010). https://doi.org/10.1016/j.knosys.2010.03.009

    Article  Google Scholar 

  42. Bobadilla, J., Ortega, F., Hernando, A., Bernal, J.: A collaborative filtering approach to mitigate the new user cold start problem. Knowl.-Based Syst. 26, 225–238 (2012). https://doi.org/10.1016/j.knosys.2011.07.021

    Article  Google Scholar 

  43. Choi, K., Suh, Y.: A new similarity function for selecting neighbors for each target item in collaborative filtering. Knowl.-Based Syst. 37, 146–153 (2013). https://doi.org/10.1016/j.knosys.2012.07.019

    Article  Google Scholar 

  44. Jeong, B., Lee, J., Cho, H.: Improving memory-based collaborative filtering via similarity updating and prediction modulation. Inf. Sci. 180(5), 602–612 (2010). https://doi.org/10.1016/j.ins.2009.10.016

    Article  Google Scholar 

  45. Yan, C., Ding, A., Zhang, Y., Wang, Z.: Learning fashion similarity based on hierarchical attribute embedding. In: 2021 IEEE 8th International Conference on Data Science and Advanced Analytics (DSAA), pp. 1–8 (2021). https://doi.org/10.1109/DSAA53316.2021.9564236

  46. Unnikrishnan, V., Beyer, C., Matuszyk, P., Niemann, U., Pryss, R., Schlee, W., Ntoutsi, E., Spiliopoulou, M.: Entity-level stream classification: Exploiting entity similarity to label the future observations referring to an entity. Int. J. Data Sci. Anal. 9(1), 1–15 (2020). https://doi.org/10.1007/s41060-019-00177-1

    Article  Google Scholar 

  47. Wen, W., Zeng, D.D., Bai, J., Zhao, K., Li, Z.: Learning embeddings based on global structural similarity in heterogeneous networks. IEEE Intell. Syst. 36(6), 13–22 (2021). https://doi.org/10.1109/MIS.2020.3027677

    Article  Google Scholar 

  48. Li, Z., Ling, F., Zhang, C.: Cross-media image-text retrieval combined with global similarity and local similarity. In: 2019 IEEE International Conference on Data Science and Advanced Analytics (DSAA), pp. 145–153 (2019). https://doi.org/10.1109/DSAA.2019.00029

  49. Fan, W., Ma, Y., Li, Q., He, Y., Zhao, E., Tang, J., Yin, D.: Graph neural networks for social recommendation. arXiv:1902.07243 [cs] (2019)

  50. Li, X., Chen, H.: Recommendation as link prediction in bipartite graphs: A graph kernel-based machine learning approach. Decis. Support Syst. 54(2), 880–890 (2013). https://doi.org/10.1016/j.dss.2012.09.019

    Article  Google Scholar 

  51. Palumbo, E., Rizzo, G., Troncy, R.: entity2rec: Learning user-item relatedness from knowledge graphs for Top-N Item recommendation. In: Proceedings of the Eleventh ACM Conference on Recommender Systems, pp. 32–36. ACM, Como Italy (2017). https://doi.org/10.1145/3109859.3109889

  52. Wang, S., Hu, L., Wang, Y., He, X., Sheng, Q.Z., Orgun, M., Cao, L., Wang, N., Ricci, F., Yu, P.S.: Graph learning approaches to recommender systems: A review. arXiv:2004.11718 [cs] (2020)

  53. Verma, J., Gupta, S., Mukherjee, D., Chakraborty, T.: Heterogeneous edge embeddings for friend recommendation. arXiv:1902.03124 [cs, stat] (2019)

  54. Cen, Y., Zou, X., Zhang, J., Yang, H., Zhou, J., Tang, J.: representation learning for attributed multiplex heterogeneous network. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining pp. 1358–1368 (2019). https://doi.org/10.1145/3292500.3330964. ArXiv:1905.01669

  55. Guo, Q., Zhuang, F., Qin, C., Zhu, H., Xie, X., Xiong, H., He, Q.: A survey on knowledge graph-based recommender systems. IEEE Trans. Knowl. Data Eng. (2020). https://doi.org/10.1109/TKDE.2020.3028705

    Article  Google Scholar 

  56. Li, Y., Ngom, A.: The non-negative matrix factorization toolbox for biological data mining. Source Code Biol. Med. 8(1), 10 (2013). https://doi.org/10.1186/1751-0473-8-10

    Article  Google Scholar 

  57. Dueck, D.: Affinity propagation: Clustering data by passing messages (2009)

  58. Li, B., Han, L.: Distance weighted cosine similarity measure for text classification. In: Proceedings of the 14th International Conference on Intelligent Data Engineering and Automated Learning — IDEAL 2013 - Volume 8206, IDEAL 2013, pp. 611–618. Springer-Verlag, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41278-3_74

  59. Kim, T.H., Ryu, Y.S., Park, S.I., Yang, S.B.: An improved recommendation algorithm in collaborative filtering. In: K. Bauknecht, A.M. Tjoa, G. Quirchmayr (Eds.) E-Commerce and Web Technologies, Lecture Notes in Computer Science, pp. 254–261. Springer, Berlin, Heidelberg (2002). https://doi.org/10.1007/3-540-45705-4_27

  60. Chai, T., Draxler, R.R.: Root mean square error (RMSE) or mean absolute error (MAE)? Preprint. Numerical Methods (2014). https://doi.org/10.5194/gmdd-7-1525-2014

  61. He, X., Chen, T., Kan, M.Y., Chen, X.: TriRank: Review-aware explainable recommendation by modeling aspects. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp. 1661–1670. ACM, Melbourne Australia (2015). https://doi.org/10.1145/2806416.2806504

  62. Harper, F.M., Konstan, J.A.: The MovieLens datasets: History and context. ACM Trans. Int. Intell. Syst. 5(4), 1–19 (2015). https://doi.org/10.1145/2827872

  63. Ta Feng grocery dataset. https://www.kaggle.com/chiranjivdas09/ta-feng-grocery-dataset

  64. Ziegler, C.N., McNee, S.M., Konstan, J.A., Lausen, G.: Improving recommendation lists through topic diversification. In: Proceedings of the 14th International Conference on World Wide Web, WWW ’05, pp. 22–32. Association for Computing Machinery, New York, NY, USA (2005). https://doi.org/10.1145/1060745.1060754

  65. Bennett, J., Lanning, S., Netflix, N.: The Netflix Prize. In: In KDD Cup and Workshop in conjunction with KDD (2007)

  66. Ni, J., Li, J., McAuley, J.: Justifying Recommendations using Distantly-Labeled Reviews and Fine-Grained Aspects. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 188–197. Association for Computational Linguistics, Hong Kong, China (2019). doi: https://doi.org/10.18653/v1/D19-1018

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anshul Gupta.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, A., Shrinath, P. A novel recommendation system comprising WNMF with graph-based static and temporal similarity estimators. Int J Data Sci Anal 16, 27–41 (2023). https://doi.org/10.1007/s41060-022-00355-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41060-022-00355-8

Keywords

Navigation