Abstract
Process mining is the confluence between data mining and business process management, which is a growing and promising research topic. From process execution event logs, process mining focuses on understanding end-to-end processes and helps provide more significant findings. In this paper, a brief review of each of the main stages (discovery, conformance, and enhancement) of the process mining and low-code automation platforms for business processes are stated. Also, it provides an analysis of the 16 most prominent process mining software as well as an in-depth taxonomy considering 55 features. From this comparison, a subset of software obtained the best scores for process discovery while others for process simulation. Finally, trends and a set of challenges for process mining are pointed out.




Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
References
Agostinelli, S., Marrella, A., Mecella, M.: Research challenges for intelligent robotic process automation. In: Di Francescomarino, C., Dijkman, R., Zdun, U. (eds.) Business Process Management Workshops, pp. 12–18. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-37453-2_2
Agrawal, R., Gunopulos, D., Leymann, F.: Mining process models from workflow logs. In: Schek, H.J., Alonso, G., Saltor, F., Ramos, I. (eds.) Advances in Database Technology—EDBT’98, pp. 467–483. Springer, Berlin (1998). https://doi.org/10.1007/BFb0101003
Aguirre, S., Rodriguez, A.: Automation of a business process using robotic process automation (RPA): a case study. In: Figueroa-García, J.C., López-Santana, E.R., Villa-Ramírez, J.L., Ferro-Escobar, R. (eds.) Applied Computer Sciences in Engineering, pp. 65–71. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66963-2_7
Al-Mashari, M.: Process orientation through enterprise resource planning (ERP): a review of critical issues. Knowl. Process. Manag. 8(3), 175–185 (2001). https://doi.org/10.1002/kpm.114
Alves de Medeiros, A.K., van der Aalst, W.M.P.: Process Mining towards Semantics, pp. 35–80. Springer, Berlin (2009). https://doi.org/10.1007/978-3-540-89784-2_3
Andrews, R., van Dun, C., Wynn, M., Kratsch, W., Röglinger, M., ter Hofstede, A.: Quality-informed semi-automated event log generation for process mining. Decis. Support Syst. 132, 113265 (2020). https://doi.org/10.1016/j.dss.2020.113265
Arslan, A., Haapanen, L., Ahokangas, P., Naughton, S.: Multicultural R &D team operations in high-tech SMEs: role of team task environment and individual team members’ personal experiences. J. Bus. Res. 128, 661–672 (2021). https://doi.org/10.1016/j.jbusres.2020.02.003
Caron, F., Vanthienen, J., Baesens, B.: Comprehensive rule-based compliance checking and risk management with process mining. Decis. Support Syst. 54(3), 1357–1369 (2013). https://doi.org/10.1016/j.dss.2012.12.012
Cho, M., Song, M., Comuzzi, M., Yoo, S.: Evaluating the effect of best practices for business process redesign: an evidence-based approach based on process mining techniques. Decis. Support Syst. 104, 92–103 (2017). https://doi.org/10.1016/j.dss.2017.10.004
De Weerdt, J., De Backer, M., Vanthienen, J., Baesens, B.: A multi-dimensional quality assessment of state-of-the-art process discovery algorithms using real-life event logs. Inf. Syst. 37(7), 654–676 (2012). https://doi.org/10.1016/j.is.2012.02.004
Dogan, O.: Process mining technology selection with spherical fuzzy AHP and sensitivity analysis. Expert Syst. Appl. 178, 114999 (2021). https://doi.org/10.1016/j.eswa.2021.114999
Donthu, N., Gustafsson, A.: Effects of COVID-19 on business and research. J. Bus. Res. 117, 284–289 (2020). https://doi.org/10.1016/j.jbusres.2020.06.008
dos Santos, Garcia C., Meincheim, A., Faria Junior, E.R., Dallagassa, M.R., Sato, D.M.V., Carvalho, D.R., Santos, E.A.P., Scalabrin, E.E.: Process mining techniques and applications—a systematic mapping study. Expert Syst. Appl. 133, 260–295 (2019). https://doi.org/10.1016/j.eswa.2019.05.003
Esmaeili, L., Golpayegani, A.H.: A novel method for discovering process based on the network analysis approach in the context of social commerce systems. J. Theor. Appl. Electron. Commer. Res. 16(2), 34–62 (2021). https://doi.org/10.4067/S0718-18762021000200104
Kir, H., Erdogan, N.: A knowledge-intensive adaptive business process management framework. Inf. Syst. 95, 101639 (2021). https://doi.org/10.1016/j.is.2020.101639
Leemans, S.J., van der Aalst, W.M., Brockhoff, T., Polyvyanyy, A.: Stochastic process mining: earth movers’ stochastic conformance. Inf. Syst. 102, 101724 (2021). https://doi.org/10.1016/j.is.2021.101724
Leno, V., Polyvyanyy, A., Dumas, M., La Rosa, M., Maggi, F.M.: Robotic process mining: vision and challenges. Bus. Inf. Syst. Eng. 63(3), 301–314 (2021). https://doi.org/10.1007/s12599-020-00641-4
Li, H., Tang, X., Zhao, W., Yang, B.: Approaches to deep learning based manipulating strategy reconstructions for complex chemical processes. J. Process Control 107, 127–140 (2021). https://doi.org/10.1016/j.jprocont.2021.10.009
Loyola-González, O.: Black-box vs. white-box: understanding their advantages and weaknesses from a practical point of view. IEEE Access 7, 154096–154113 (2019). https://doi.org/10.1109/ACCESS.2019.2949286
Loyola-González, O., Medina-Pérez, M.A., Choo, K.K.R.: A review of supervised classification based on contrast patterns: applications, trends, and challenges. J. Grid Comput. 18(4), 797–845 (2020). https://doi.org/10.1007/s10723-020-09526-y
Ly, L.T., Maggi, F.M., Montali, M., Rinderle-Ma, S., van der Aalst, W.M.: A framework for the systematic comparison and evaluation of compliance monitoring approaches. In: 2013 17th IEEE International Enterprise Distributed Object Computing Conference, pp. 7–16 (2013). https://doi.org/10.1109/EDOC.2013.11
Martin, N.: Data Quality in Process Mining, pp. 53–79. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-53993-1_5
Matias, J., Kungurtsev, V., Egan, M.: Simultaneous online model identification and production optimization using modifier adaptation. J. Process Control 110, 110–120 (2022). https://doi.org/10.1016/j.jprocont.2021.12.009
Mehdiyev, N., Fettke, P.: Explainable Artificial Intelligence for Process Mining: A General Overview and Application of a Novel Local Explanation Approach for Predictive Process Monitoring, pp. 1–28. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-64949-4_1
Munoz-Gama, J.: Conformance Checking and its Challenges, pp. 11–18. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49451-7_2
Ngai, E.W., Wu, Y.: Machine learning in marketing: a literature review, conceptual framework, and research agenda. J. Bus. Res. 145, 35–48 (2022). https://doi.org/10.1016/j.jbusres.2022.02.049
Ouyang, C., Dumas, M., Aalst, W.M.P.V.D., Hofstede, A.H.M.T., Mendling, J.: From business process models to process-oriented software systems. ACM Trans. Softw. Eng. Methodol. (2009). https://doi.org/10.1145/1555392.1555395
Rautenburger, L., Liebl, A.: Process Mining, pp. 259–275. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78829-2_15
Ribeiro, J., Lima, R., Eckhardt, T., Paiva, S.: Robotic process automation and artificial intelligence in industry 4.0—a literature review. Procedia Comput. Sci. 181, 51–58 (2021). https://doi.org/10.1016/j.procs.2021.01.104
Sahay, A., Indamutsa, A., Di Ruscio, D., Pierantonio, A.: Supporting the understanding and comparison of low-code development platforms. In: 46th Euromicro Conference on Software Engineering and Advanced Applications (SEAA), pp. 171–178 (2020). https://doi.org/10.1109/SEAA51224.2020.00036
Sanchis, R., García-Perales, O., Fraile, F., Poler, R.: Low-code as enabler of digital transformation in manufacturing industry. Appl. Sci. (2020). https://doi.org/10.3390/app10010012
van der Aalst, W.: Process mining: overview and opportunities. ACM Trans. Manag. Inf. Syst. (2012). https://doi.org/10.1145/2229156.2229157
van der Aalst, W.: Process Mining Software, pp. 325–352. Springer, Berlin (2016). https://doi.org/10.1007/978-3-662-49851-4_11
van der Aalst, W., Reijers, H., Weijters, A., van Dongen, B., Alves de Medeiros, A., Song, M., Verbeek, H.: Business process mining: an industrial application. Inf. Syst. 32(5), 713–732 (2007). https://doi.org/10.1016/j.is.2006.05.003
van Zelst, S.J., Mannhardt, F., de Leoni, M., Koschmider, A.: Event abstraction in process mining: literature review and taxonomy. Granul. Comput. 6(3), 719–736 (2021). https://doi.org/10.1007/s41066-020-00226-2
Vouros, G.A.: Explainable deep reinforcement learning: state of the art and challenges. ACM Comput. Surv. (2022). https://doi.org/10.1145/3527448
Wegner, H., Hupe, P., Matthes, F.: A process-oriented and content-based perspective on software components. Inf. Syst. 25(2), 135–156 (2000). https://doi.org/10.1016/S0306-4379(00)00013-2
Weng, X., Xu, X., Bai, Y., Ma, F., Wang, G., Dustdar, S.: A data-driven industrial alarm decision method via evidence reasoning rule. J. Process Control 105, 15–26 (2021). https://doi.org/10.1016/j.jprocont.2021.07.006
Werner, M., Wiese, M., Maas, A.: Embedding process mining into financial statement audits. Int. J. Account. Inf. Syst. 41, 100514 (2021). https://doi.org/10.1016/j.accinf.2021.100514
Yang, J., Ouyang, C., van der Aalst, W.M., ter Hofstede, A.H., Yu, Y.: Ordinor: a framework for discovering, evaluating, and analyzing organizational models using event logs. Decis. Support Syst. 113771 (2022). https://doi.org/10.1016/j.dss.2022.113771
Zerbino, P., Stefanini, A., Aloini, D.: Process science in action: a literature review on process mining in business management. Technol. Forecast. Soc. Chang. 172, 121021 (2021). https://doi.org/10.1016/j.techfore.2021.121021
Zolotas, C., Chatzidimitriou, K.C., Symeonidis, A.L.: RESTsec: a low-code platform for generating secure by design enterprise services. Enterp. Inf. Syst. 12(8–9), 1007–1033 (2018). https://doi.org/10.1080/17517575.2018.1462403
Funding
No funding was received to assist with the preparation of this manuscript.
Author information
Authors and Affiliations
Contributions
I have wrote whole the manuscript, as a consequence I also have conducted all research for this manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The author has no competing interests to declare that are relevant to the content of this article.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Loyola-González, O. Process mining: software comparison, trends, and challenges. Int J Data Sci Anal 15, 407–420 (2023). https://doi.org/10.1007/s41060-022-00379-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s41060-022-00379-0