Skip to main content

Advertisement

Log in

Process mining: software comparison, trends, and challenges

  • Review
  • Published:
International Journal of Data Science and Analytics Aims and scope Submit manuscript

Abstract

Process mining is the confluence between data mining and business process management, which is a growing and promising research topic. From process execution event logs, process mining focuses on understanding end-to-end processes and helps provide more significant findings. In this paper, a brief review of each of the main stages (discovery, conformance, and enhancement) of the process mining and low-code automation platforms for business processes are stated. Also, it provides an analysis of the 16 most prominent process mining software as well as an in-depth taxonomy considering 55 features. From this comparison, a subset of software obtained the best scores for process discovery while others for process simulation. Finally, trends and a set of challenges for process mining are pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. http://appian.com.

  2. http://appian.com/resources/resource-center/analyst-reports/gartner-peer-insights-enterprise-low-code.html.

  3. www.kofax.com/products/totalagility.

  4. www.g2.com/categories/robotic-process-automation-rpa.

  5. www.promodel.com/products/ProcessSimulator.

  6. www.gartner.com/reviews/market/process-mining.

  7. www.celonis.com/ems/platform/planning-and-simulation.

  8. www.celonis.com/intelligent-business-cloud/machine-learning.

References

  1. Agostinelli, S., Marrella, A., Mecella, M.: Research challenges for intelligent robotic process automation. In: Di Francescomarino, C., Dijkman, R., Zdun, U. (eds.) Business Process Management Workshops, pp. 12–18. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-37453-2_2

    Chapter  Google Scholar 

  2. Agrawal, R., Gunopulos, D., Leymann, F.: Mining process models from workflow logs. In: Schek, H.J., Alonso, G., Saltor, F., Ramos, I. (eds.) Advances in Database Technology—EDBT’98, pp. 467–483. Springer, Berlin (1998). https://doi.org/10.1007/BFb0101003

    Chapter  Google Scholar 

  3. Aguirre, S., Rodriguez, A.: Automation of a business process using robotic process automation (RPA): a case study. In: Figueroa-García, J.C., López-Santana, E.R., Villa-Ramírez, J.L., Ferro-Escobar, R. (eds.) Applied Computer Sciences in Engineering, pp. 65–71. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66963-2_7

    Chapter  Google Scholar 

  4. Al-Mashari, M.: Process orientation through enterprise resource planning (ERP): a review of critical issues. Knowl. Process. Manag. 8(3), 175–185 (2001). https://doi.org/10.1002/kpm.114

    Article  Google Scholar 

  5. Alves de Medeiros, A.K., van der Aalst, W.M.P.: Process Mining towards Semantics, pp. 35–80. Springer, Berlin (2009). https://doi.org/10.1007/978-3-540-89784-2_3

    Book  Google Scholar 

  6. Andrews, R., van Dun, C., Wynn, M., Kratsch, W., Röglinger, M., ter Hofstede, A.: Quality-informed semi-automated event log generation for process mining. Decis. Support Syst. 132, 113265 (2020). https://doi.org/10.1016/j.dss.2020.113265

    Article  Google Scholar 

  7. Arslan, A., Haapanen, L., Ahokangas, P., Naughton, S.: Multicultural R &D team operations in high-tech SMEs: role of team task environment and individual team members’ personal experiences. J. Bus. Res. 128, 661–672 (2021). https://doi.org/10.1016/j.jbusres.2020.02.003

    Article  Google Scholar 

  8. Caron, F., Vanthienen, J., Baesens, B.: Comprehensive rule-based compliance checking and risk management with process mining. Decis. Support Syst. 54(3), 1357–1369 (2013). https://doi.org/10.1016/j.dss.2012.12.012

    Article  Google Scholar 

  9. Cho, M., Song, M., Comuzzi, M., Yoo, S.: Evaluating the effect of best practices for business process redesign: an evidence-based approach based on process mining techniques. Decis. Support Syst. 104, 92–103 (2017). https://doi.org/10.1016/j.dss.2017.10.004

    Article  Google Scholar 

  10. De Weerdt, J., De Backer, M., Vanthienen, J., Baesens, B.: A multi-dimensional quality assessment of state-of-the-art process discovery algorithms using real-life event logs. Inf. Syst. 37(7), 654–676 (2012). https://doi.org/10.1016/j.is.2012.02.004

    Article  Google Scholar 

  11. Dogan, O.: Process mining technology selection with spherical fuzzy AHP and sensitivity analysis. Expert Syst. Appl. 178, 114999 (2021). https://doi.org/10.1016/j.eswa.2021.114999

    Article  Google Scholar 

  12. Donthu, N., Gustafsson, A.: Effects of COVID-19 on business and research. J. Bus. Res. 117, 284–289 (2020). https://doi.org/10.1016/j.jbusres.2020.06.008

    Article  Google Scholar 

  13. dos Santos, Garcia C., Meincheim, A., Faria Junior, E.R., Dallagassa, M.R., Sato, D.M.V., Carvalho, D.R., Santos, E.A.P., Scalabrin, E.E.: Process mining techniques and applications—a systematic mapping study. Expert Syst. Appl. 133, 260–295 (2019). https://doi.org/10.1016/j.eswa.2019.05.003

    Article  Google Scholar 

  14. Esmaeili, L., Golpayegani, A.H.: A novel method for discovering process based on the network analysis approach in the context of social commerce systems. J. Theor. Appl. Electron. Commer. Res. 16(2), 34–62 (2021). https://doi.org/10.4067/S0718-18762021000200104

    Article  Google Scholar 

  15. Kir, H., Erdogan, N.: A knowledge-intensive adaptive business process management framework. Inf. Syst. 95, 101639 (2021). https://doi.org/10.1016/j.is.2020.101639

    Article  Google Scholar 

  16. Leemans, S.J., van der Aalst, W.M., Brockhoff, T., Polyvyanyy, A.: Stochastic process mining: earth movers’ stochastic conformance. Inf. Syst. 102, 101724 (2021). https://doi.org/10.1016/j.is.2021.101724

    Article  Google Scholar 

  17. Leno, V., Polyvyanyy, A., Dumas, M., La Rosa, M., Maggi, F.M.: Robotic process mining: vision and challenges. Bus. Inf. Syst. Eng. 63(3), 301–314 (2021). https://doi.org/10.1007/s12599-020-00641-4

    Article  Google Scholar 

  18. Li, H., Tang, X., Zhao, W., Yang, B.: Approaches to deep learning based manipulating strategy reconstructions for complex chemical processes. J. Process Control 107, 127–140 (2021). https://doi.org/10.1016/j.jprocont.2021.10.009

    Article  Google Scholar 

  19. Loyola-González, O.: Black-box vs. white-box: understanding their advantages and weaknesses from a practical point of view. IEEE Access 7, 154096–154113 (2019). https://doi.org/10.1109/ACCESS.2019.2949286

    Article  Google Scholar 

  20. Loyola-González, O., Medina-Pérez, M.A., Choo, K.K.R.: A review of supervised classification based on contrast patterns: applications, trends, and challenges. J. Grid Comput. 18(4), 797–845 (2020). https://doi.org/10.1007/s10723-020-09526-y

    Article  Google Scholar 

  21. Ly, L.T., Maggi, F.M., Montali, M., Rinderle-Ma, S., van der Aalst, W.M.: A framework for the systematic comparison and evaluation of compliance monitoring approaches. In: 2013 17th IEEE International Enterprise Distributed Object Computing Conference, pp. 7–16 (2013). https://doi.org/10.1109/EDOC.2013.11

  22. Martin, N.: Data Quality in Process Mining, pp. 53–79. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-53993-1_5

    Book  Google Scholar 

  23. Matias, J., Kungurtsev, V., Egan, M.: Simultaneous online model identification and production optimization using modifier adaptation. J. Process Control 110, 110–120 (2022). https://doi.org/10.1016/j.jprocont.2021.12.009

    Article  Google Scholar 

  24. Mehdiyev, N., Fettke, P.: Explainable Artificial Intelligence for Process Mining: A General Overview and Application of a Novel Local Explanation Approach for Predictive Process Monitoring, pp. 1–28. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-64949-4_1

    Book  Google Scholar 

  25. Munoz-Gama, J.: Conformance Checking and its Challenges, pp. 11–18. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49451-7_2

    Book  Google Scholar 

  26. Ngai, E.W., Wu, Y.: Machine learning in marketing: a literature review, conceptual framework, and research agenda. J. Bus. Res. 145, 35–48 (2022). https://doi.org/10.1016/j.jbusres.2022.02.049

    Article  Google Scholar 

  27. Ouyang, C., Dumas, M., Aalst, W.M.P.V.D., Hofstede, A.H.M.T., Mendling, J.: From business process models to process-oriented software systems. ACM Trans. Softw. Eng. Methodol. (2009). https://doi.org/10.1145/1555392.1555395

    Article  Google Scholar 

  28. Rautenburger, L., Liebl, A.: Process Mining, pp. 259–275. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78829-2_15

    Book  Google Scholar 

  29. Ribeiro, J., Lima, R., Eckhardt, T., Paiva, S.: Robotic process automation and artificial intelligence in industry 4.0—a literature review. Procedia Comput. Sci. 181, 51–58 (2021). https://doi.org/10.1016/j.procs.2021.01.104

    Article  Google Scholar 

  30. Sahay, A., Indamutsa, A., Di Ruscio, D., Pierantonio, A.: Supporting the understanding and comparison of low-code development platforms. In: 46th Euromicro Conference on Software Engineering and Advanced Applications (SEAA), pp. 171–178 (2020). https://doi.org/10.1109/SEAA51224.2020.00036

  31. Sanchis, R., García-Perales, O., Fraile, F., Poler, R.: Low-code as enabler of digital transformation in manufacturing industry. Appl. Sci. (2020). https://doi.org/10.3390/app10010012

    Article  Google Scholar 

  32. van der Aalst, W.: Process mining: overview and opportunities. ACM Trans. Manag. Inf. Syst. (2012). https://doi.org/10.1145/2229156.2229157

    Article  Google Scholar 

  33. van der Aalst, W.: Process Mining Software, pp. 325–352. Springer, Berlin (2016). https://doi.org/10.1007/978-3-662-49851-4_11

    Book  Google Scholar 

  34. van der Aalst, W., Reijers, H., Weijters, A., van Dongen, B., Alves de Medeiros, A., Song, M., Verbeek, H.: Business process mining: an industrial application. Inf. Syst. 32(5), 713–732 (2007). https://doi.org/10.1016/j.is.2006.05.003

  35. van Zelst, S.J., Mannhardt, F., de Leoni, M., Koschmider, A.: Event abstraction in process mining: literature review and taxonomy. Granul. Comput. 6(3), 719–736 (2021). https://doi.org/10.1007/s41066-020-00226-2

  36. Vouros, G.A.: Explainable deep reinforcement learning: state of the art and challenges. ACM Comput. Surv. (2022). https://doi.org/10.1145/3527448

    Article  Google Scholar 

  37. Wegner, H., Hupe, P., Matthes, F.: A process-oriented and content-based perspective on software components. Inf. Syst. 25(2), 135–156 (2000). https://doi.org/10.1016/S0306-4379(00)00013-2

    Article  Google Scholar 

  38. Weng, X., Xu, X., Bai, Y., Ma, F., Wang, G., Dustdar, S.: A data-driven industrial alarm decision method via evidence reasoning rule. J. Process Control 105, 15–26 (2021). https://doi.org/10.1016/j.jprocont.2021.07.006

    Article  Google Scholar 

  39. Werner, M., Wiese, M., Maas, A.: Embedding process mining into financial statement audits. Int. J. Account. Inf. Syst. 41, 100514 (2021). https://doi.org/10.1016/j.accinf.2021.100514

    Article  Google Scholar 

  40. Yang, J., Ouyang, C., van der Aalst, W.M., ter Hofstede, A.H., Yu, Y.: Ordinor: a framework for discovering, evaluating, and analyzing organizational models using event logs. Decis. Support Syst. 113771 (2022). https://doi.org/10.1016/j.dss.2022.113771

  41. Zerbino, P., Stefanini, A., Aloini, D.: Process science in action: a literature review on process mining in business management. Technol. Forecast. Soc. Chang. 172, 121021 (2021). https://doi.org/10.1016/j.techfore.2021.121021

    Article  Google Scholar 

  42. Zolotas, C., Chatzidimitriou, K.C., Symeonidis, A.L.: RESTsec: a low-code platform for generating secure by design enterprise services. Enterp. Inf. Syst. 12(8–9), 1007–1033 (2018). https://doi.org/10.1080/17517575.2018.1462403

    Article  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

I have wrote whole the manuscript, as a consequence I also have conducted all research for this manuscript.

Corresponding author

Correspondence to Octavio Loyola-González.

Ethics declarations

Conflict of interest

The author has no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loyola-González, O. Process mining: software comparison, trends, and challenges. Int J Data Sci Anal 15, 407–420 (2023). https://doi.org/10.1007/s41060-022-00379-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41060-022-00379-0

Keywords