Abstract
Recently, the recommender system has been raised as one of the essential research topics in smart tourism. The massive card transaction data generated in the tourism industry has become an important resource that implies tourist consumption behaviors and patterns. However, there are challenges such as the high absence possibility of explicit feedback, which is the basis of traditional collaborative filtering techniques, and the consideration of auxiliary factors (e.g., temporal, spatial, and demographic information) that could improve the recommendation performances. In this paper, we introduce TPEDTR, a novel approach using card transaction data to recommend tourism services. It consists of two main components: (i) temporal preference embedding (TPE) models tourist groups’ interactions with services chronologically to obtain their representation vectors. And (ii) deep neural network-based tourism recommendation (DTR) uses the vectors and auxiliary factors as inputs to provide tourist services. To evaluate the TPEDTR, a dataset of card transactions that happened in Jeju island, one of the most famous attractions in South Korea, over eight years is used. Experimental results demonstrate the efficacy of the proposed method and the positive effectiveness of introducing additional information on recommendation performances.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
World Travel & Tourism Council, Economic impact reports, https://wttc.org/Research/Economic-Impact, (accessed on 19 July 2021).
References
Al-Ghossein, M., Abdessalem, T., Barré, A.: Cross-domain recommendation in the hotel sector. In: Proceedings of the Workshop on Recommenders in Tourism, Rectour 2018, Co-located with the 12th ACM Conference on Recommender Systems (recsys 2018), vol. 2222, 1–6. Vancouver, CanadaCEUR-WS.org (2018)
Baek, J.-W., Chung, K.-Y.: Multimedia recommendation using word2vec-based social relationship mining. Multimedia Tools Appl. (2020). https://doi.org/10.1007/s11042-019-08607-9
Bayer, I., He, X., Kanagal, B. ,Rendle, S.: A generic coordinate descent framework for learning from implicit feedback. In: Proceedings of the 26th International Conference on World Wide Web, WWW 2017, pp. 1341–1350.(2017) Perth, Australia, ACM. https://doi.org/10.1145/3038912.3052694
Cai, G., Lee, K., Lee, I.: Itinerary recommender system with semantic trajectory pattern mining from geo-tagged photos. Expert Syst. Appl. 94, 32–40 (2018). https://doi.org/10.1016/j.eswa.2017.10.049
Cao, B., Chen, J., Liu, J., Wen, Y.: A topic attention mechanism and factorization machines based mobile application recommendation method. Mob. Netw. Appl. 25(4), 1208–1219 (2020). https://doi.org/10.1007/s11036-020-01537-z
Chaudhari, K., Thakkar, A.: A comprehensive survey on travel recommender systems. In: Archives of Computational Methods in Engineering, pp. 1–27 (2019) https://doi.org/10.1007/s11831-019-09363-7
Chen, L., Wu, Z., Cao, J., Zhu, G., Ge, Y.: Travel recommendation via fusing multi- auxiliary information into matrix factorization. ACM Trans. Intell. Syst. Technol. 11(2), 22:1-22:24 (2020). https://doi.org/10.1145/3372118
Chen, L., Yang, W., Li, K., Li, K.: Dis- tributed matrix factorization based on fast optimization for implicit feedback recommendation. J. Intell. Inf. Syst. 56(1), 49–72 (2021). https://doi.org/10.1007/s10844-020-00601-0
Cheng, M., Yuan, F., Liu, Q., Ge, S., Li, Z., Yu, R., Chen, E.: Learning recommender systems with implicit feedback via soft target enhancement. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 575–584. Virtual Event, Canada, ACM. (2021). https://doi.org/10.1145/3404835.3462863
Dai, F., Gu, X., Wang, Z., Qian, M., Li, B., Wang, W.: Heterogeneous side information-based iterative guidance model for recommendation. In: Proceedings of the International Conference on Multimedia Retrieval ICMR, pp. 55–63. Taipei, Taiwan, ACM. (2021). https://doi.org/10.1145/3460426.3463631
Das, D., Sahoo, L., Datta, S.: A survey on recommendation system. Int. J. Comput. Appl. 160(7), 6–10 (2017)
Ding, J., Yu, G., Li, Y., He, X., Jin, D.: Improving implicit recommender systems with auxiliary data. ACM Trans. Inf. Syst. 38(1), 11:1-11:27 (2020). https://doi.org/10.1145/3372338
Esmaeili, L., Mardani, S., Golpayegani, S.A.H., Madar, Z.Z.: A novel tourism recommender system in the context of social commerce. Expert Syst. Appl. 149, 113301 (2020). https://doi.org/10.1016/j.eswa.2020.113301
Esmeli, R., Bader-El-Den, M., Abdullahi, H.: Using word2vec recommendation for improved purchase prediction. In: Proceedings of the 2020 International Joint Conference on Neural Networks, IJCNN, 1–8, Glasgow, United Kingdom, IEEE. (2020). https://doi.org/10.1109/IJCNN48605.2020.9206871
Fessahaye, F., Perez, L., Zhan, T., Zhang, R., Fossier, C., Markarian, R.-Oh, P.Y.: T-RECSYS: A novel music recommendation system using deep learning. In: Proceedings of the IEEE International Conference on Consumer Electronics, ICCE 2019, 1–6 (2019) Las Vegas, NV, USA. IEEE. https://doi.org/10.1109/ICCE.2019.8662028
Fudholi, D.H., Rani, S., Arifin, D.M., Satyatama, M.R.: Deep learning-based mobile tourism recommender system. Sci. J. Inform. 8(1), 111–118 (2021). https://doi.org/10.15294/sji.v8i1.29262
Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, AISTATS, vol. 15, pp. 315–323. Fort Lauderdale, USAJMLR.org (2011)
Guo, L., Liang, J., Zhu, Y., Luo, Y., Sun, L., Zheng, X.: Collaborative filtering recommendation based on trust and emotion. J. Intell. Inf. Syst. 53(1), 113–135 (2019). https://doi.org/10.1007/s10844-018-0517-4
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pp. 770–778 (2016) Las Vegas, NV, USA. IEEE Computer Society. https://doi.org/10.1109/CVPR.2016.90
He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.: Neural collaborative filtering. In: Proceedings of the 26th International Conference on World Wide Web, pp. 173–182. Perth, Australia, ACM (2017). https://doi.org/10.1145/3038912.3052569
He, X., Zhang, H., Kan, M., Chua, T.: Fast matrix factorization for online recommendation with implicit feedback. In: Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2016, pp. 549–558. ACM, Pisa, Italy (2016). https://doi.org/10.1145/2911451.2911489
Hong, M.: Decrease and conquer-based parallel tensor factorization for diversity and real-time of multi-criteria recommendation. Inf. Sci. 562, 259–278 (2021). https://doi.org/10.1016/j.ins.2021.02.005
Hong, M., Jung, J.J.: Multi-criteria tensor model consolidating spatial and temporal information for tourism recommendation. J. Ambient Intell. Smart Environ. 13(1), 5–19 (2021). https://doi.org/10.3233/AIS-200584
Hong, M., Jung, J.J.: Multi-criteria tensor model for tourism recommender systems. Expert Syst. Appl. 170114537 (2021). https://doi.org/10.1016/j.eswa.2020.114537
Hong, M., Jung, J.J.: Sentiment aware tensor model for multi-criteria recommendation. Appl. Intell. 1–20 (2022)
Katarya, R., Arora, Y.: Capsmf: a novel product recommender system using deep learning based text analysis model. Multim. Tools Appl. 79(47), 35927–35948 (2020). https://doi.org/10.1007/s11042-020-09199-5
Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015. San Diego, CA, USA (2015)
Kotiloglu, S., Lappas, T., Pelechrinis, K., Repoussis, P.: Personalized multi-period tour recommendations. Tour. Manag. 62, 76–88 (2017). https://doi.org/10.1016/j.tourman.2017.03.005
Le, Q.V., Mikolov, T.: Distributed representations of sentences and documents. In: Proceedings of the 31th International Conference on Machine Learning, ICML, vol. 32, pp. 1188–1196 (2014) Beijing, China. JMLR.org
Li, M., Wu, H., Zhang, H.: Matrix factorization for personalized recommendation with implicit feedback and temporal information in social ecommerce networks. IEEE Access 7, 141268–141276 (2019). https://doi.org/10.1109/ACCESS.2019.2943959
Li, P., Wang, Z., Ren, Z., Bing, L., Lam, W.: Neural rating regression with abstractive tips generation for recommendation. In: Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 345–354. ACM, Shinjuku, Tokyo, Japan (2017). https://doi.org/10.1145/3077136.3080822
Liu, Q., Chen, E., Xiong, H., Ge, Y., Li, Z., Wu, X.: A cocktail approach for travel package recommendation. IEEE Trans. Knowl. Data Eng. 26(2), 278–293 (2014). https://doi.org/10.1109/TKDE.2012.233
Liu, Q. , Zeng, Y. , Mokhosi, R. ,Zhang, H.: STAMP: short-term attention/memory priority model for session-based recommendation. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1831–1839. UKACM, London (2018). https://doi.org/10.1145/3219819.3219950
Lu, J., Wu, D., Mao, M., Wang, W., Zhang, G.: Recommender system application developments: a survey. Decis. Support Syst. 74, 12–32 (2015). https://doi.org/10.1016/j.dss.2015.03.008
Misztal-Radecka, J., Indurkhya, B., Smywinski-Pohl, A.: Meta-user2vec model for addressing the user and item cold-start problem in recommender systems. User Model. User Adapt. Interact. 31(2), 261–286 (2021). https://doi.org/10.1007/s11257-020-09282-4
Musto, C. , Semeraro, G. , de Gemmis, M. ,Lops, P.: Word embedding techniques for content-based recommender systems: an empirical evaluation. In: Proceedings of the 9th ACM Conference on Recommender Systems, recsys., vol. 1441. CEUR-WS.org, Vienna, Austria (2015)
Nassar, N., Jafar, A., Rahhal, Y.: A novel deep multi-criteria collaborative filtering model for recommendation system. Knowl. Based Syst. (2020). https://doi.org/10.1016/j.knosys.2019.06.019
Ozsoy, M.G.: From word embeddings to item recommendation. CoRR (2016). arXiv:1601.01356
Park, S.-T., Liu, C.: A study on topic models using LDA and Word2Vec in travel route recommendation: focus on convergence travel and tours reviews. Pers. Ubiquit. Comput. (2020). https://doi.org/10.1007/s00779-020-01476-2
Pessemier, T.D., Dhondt, J., Martens, L.: Hybrid group recommendations for a travel service. Multim. Tools Appl. 76(2), 2787–2811 (2017). https://doi.org/10.1007/s11042-016-3265-x
Rakesh, V., Jadhav, N., Kotov, A., Reddy, C.K.: Probabilistic social sequential model for tour recommendation. In: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, WSDM 2017, pp. 631–640. ACM, Cambridge, United Kingdom (2017). https://doi.org/10.1145/3018661.3018711
Sánchez-Moreno, D., Zheng, Y., García, M.N.M.: Incorporating time dynamics and implicit feedback into music recommender systems. In: Proceedings of the 2018 IEEE/WIC/ACM International Conference on Web Intelligence, WI 2018, pp. 580–585. IEEE Computer Society, Santiago, Chile (2018). https://doi.org/10.1109/WI.2018.00-34
Shambour, Q.: A deep learning based algorithm for multi-criteria recommender systems. Knowl.-Based Syst. 211, 106545 (2021). https://doi.org/10.1016/j.knosys.2020.106545
Sharifihosseini, A.: A case study for presenting bank recommender systems based on bon card transaction data. In: Proceedings of the 9th International Conference on Computer and Knowledge Engineering (ICCKE), pp. 72–77 (2019)
Tahmasebi, H., Ravanmehr, R., Mohamadrezaei, R.: Social movie recommender system based on deep autoencoder network using twitter data. Neural Comput. Appl. 33(5), 1607–1623 (2021). https://doi.org/10.1007/s00521-020-05085-1
Tan, C., Liu, Q., Chen, E., Xiong, H., Wu, X.: Object-oriented travel package recommendation. ACM Trans. Intell. Syst. Technol. 5(3), 43:1-43:26 (2014). https://doi.org/10.1145/2542665
Thasal, R., Yelkar, S., Tare, A., Gaikwad, S.: Information retrieval and de-duplication for tourism recommender system. Int. Res. J. Eng. Technol. (IRJET) 5(03) (2018)
Tong, C., Qi, J., Lian, Y., Niu, J., Rodrigues, J.J.P.C.: Timetrustsvd: A collaborative filtering model integrating time, trust and rating information. Future Gener. Comput. Syst. 93, 933–941 (2019). https://doi.org/10.1016/j.future.2017.07.037
Vuong Nguyen, L., Nguyen, T.-H., Jung, J.J., Camacho, D.: Extending collaborative filtering recommendation using word embedding: a hybrid approach. Concurr. Comput. Pract. Exp. (2021). https://doi.org/10.1002/cpe.6232
Wang, M.: Applying internet information technology combined with deep learning to tourism collaborative recommendation system. PLoS ONE 15(12), e0240656 (2020). https://doi.org/10.1371/journal.pone.0240656
Zhang, P., Zhang, Z., Tian, T., Wang, Y.: Collaborative filtering recommendation algorithm integrating time windows and rating predictions. Appl. Intell. 49(8), 3146–3157 (2019). https://doi.org/10.1007/s10489-019-01443-2
Zhang, S., Yao, L., Sun, A., Tay, Y.: Deep learning based recommender system: a survey and new perspectives. ACM Comput. Surv. 52(1), 5:1-5:38 (2019). https://doi.org/10.1145/3285029
Zhao, P., Xu, C., Liu, Y., Sheng, V.S., Zheng, K., Xiong, H., Zhou, X.: Photo2trip: Exploiting visual contents in geo-tagged photos for personalized tour recommendation. IEEE Trans. Knowl. Data Eng. 33(4), 1708–1721 (2021). https://doi.org/10.1109/TKDE.2019.2943854
Zheng, X., Luo, Y., Sun, L., Zhang, J., Chen, F.: A tourism destination recommender system using users’ sentiment and temporal dynamics. J. Intell. Inf. Syst. 51(3), 557–578 (2018). https://doi.org/10.1007/s10844-018-0496-5
Zhu, G., Cao, J., Li, C., Wu, Z.: A recommendation engine for travel products based on topic sequential patterns. Multim. Tools Appl. 76(16), 17595–17612 (2017). https://doi.org/10.1007/s11042-017-4406-6
Acknowledgements
This work was supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea (NRF-2019S1A3A2098438).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Hong, M., Chung, N., Koo, C. et al. TPEDTR: temporal preference embedding-based deep tourism recommendation with card transaction data. Int J Data Sci Anal 16, 147–162 (2023). https://doi.org/10.1007/s41060-022-00380-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s41060-022-00380-7