Skip to main content
Log in

TPEDTR: temporal preference embedding-based deep tourism recommendation with card transaction data

  • Regular Paper
  • Published:
International Journal of Data Science and Analytics Aims and scope Submit manuscript

Abstract

Recently, the recommender system has been raised as one of the essential research topics in smart tourism. The massive card transaction data generated in the tourism industry has become an important resource that implies tourist consumption behaviors and patterns. However, there are challenges such as the high absence possibility of explicit feedback, which is the basis of traditional collaborative filtering techniques, and the consideration of auxiliary factors (e.g., temporal, spatial, and demographic information) that could improve the recommendation performances. In this paper, we introduce TPEDTR, a novel approach using card transaction data to recommend tourism services. It consists of two main components: (i) temporal preference embedding (TPE) models tourist groups’ interactions with services chronologically to obtain their representation vectors. And (ii) deep neural network-based tourism recommendation (DTR) uses the vectors and auxiliary factors as inputs to provide tourist services. To evaluate the TPEDTR, a dataset of card transactions that happened in Jeju island, one of the most famous attractions in South Korea, over eight years is used. Experimental results demonstrate the efficacy of the proposed method and the positive effectiveness of introducing additional information on recommendation performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. World Travel & Tourism Council, Economic impact reports, https://wttc.org/Research/Economic-Impact, (accessed on 19 July 2021).

  2. https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html.

  3. KSIC: http://kssc.kostat.go.kr/ksscNew_web/ekssc/main/main.do.

  4. ISIC: https://unstats.un.org/unsd/classifications/Econ/ISIC.cshtml.

  5. https://github.com/uestcnlp/STAMP.

  6. https://radimrehurek.com/gensim/models/doc2vec.html.

References

  1. Al-Ghossein, M., Abdessalem, T., Barré, A.: Cross-domain recommendation in the hotel sector. In: Proceedings of the Workshop on Recommenders in Tourism, Rectour 2018, Co-located with the 12th ACM Conference on Recommender Systems (recsys 2018), vol. 2222, 1–6. Vancouver, CanadaCEUR-WS.org (2018)

  2. Baek, J.-W., Chung, K.-Y.: Multimedia recommendation using word2vec-based social relationship mining. Multimedia Tools Appl. (2020). https://doi.org/10.1007/s11042-019-08607-9

    Article  Google Scholar 

  3. Bayer, I., He, X., Kanagal, B. ,Rendle, S.: A generic coordinate descent framework for learning from implicit feedback. In: Proceedings of the 26th International Conference on World Wide Web, WWW 2017, pp. 1341–1350.(2017) Perth, Australia, ACM. https://doi.org/10.1145/3038912.3052694

  4. Cai, G., Lee, K., Lee, I.: Itinerary recommender system with semantic trajectory pattern mining from geo-tagged photos. Expert Syst. Appl. 94, 32–40 (2018). https://doi.org/10.1016/j.eswa.2017.10.049

    Article  Google Scholar 

  5. Cao, B., Chen, J., Liu, J., Wen, Y.: A topic attention mechanism and factorization machines based mobile application recommendation method. Mob. Netw. Appl. 25(4), 1208–1219 (2020). https://doi.org/10.1007/s11036-020-01537-z

    Article  Google Scholar 

  6. Chaudhari, K., Thakkar, A.: A comprehensive survey on travel recommender systems. In: Archives of Computational Methods in Engineering, pp. 1–27 (2019) https://doi.org/10.1007/s11831-019-09363-7

  7. Chen, L., Wu, Z., Cao, J., Zhu, G., Ge, Y.: Travel recommendation via fusing multi- auxiliary information into matrix factorization. ACM Trans. Intell. Syst. Technol. 11(2), 22:1-22:24 (2020). https://doi.org/10.1145/3372118

    Article  Google Scholar 

  8. Chen, L., Yang, W., Li, K., Li, K.: Dis- tributed matrix factorization based on fast optimization for implicit feedback recommendation. J. Intell. Inf. Syst. 56(1), 49–72 (2021). https://doi.org/10.1007/s10844-020-00601-0

    Article  Google Scholar 

  9. Cheng, M., Yuan, F., Liu, Q., Ge, S., Li, Z., Yu, R., Chen, E.: Learning recommender systems with implicit feedback via soft target enhancement. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 575–584. Virtual Event, Canada, ACM. (2021). https://doi.org/10.1145/3404835.3462863

  10. Dai, F., Gu, X., Wang, Z., Qian, M., Li, B., Wang, W.: Heterogeneous side information-based iterative guidance model for recommendation. In: Proceedings of the International Conference on Multimedia Retrieval ICMR, pp. 55–63. Taipei, Taiwan, ACM. (2021). https://doi.org/10.1145/3460426.3463631

  11. Das, D., Sahoo, L., Datta, S.: A survey on recommendation system. Int. J. Comput. Appl. 160(7), 6–10 (2017)

    Google Scholar 

  12. Ding, J., Yu, G., Li, Y., He, X., Jin, D.: Improving implicit recommender systems with auxiliary data. ACM Trans. Inf. Syst. 38(1), 11:1-11:27 (2020). https://doi.org/10.1145/3372338

    Article  Google Scholar 

  13. Esmaeili, L., Mardani, S., Golpayegani, S.A.H., Madar, Z.Z.: A novel tourism recommender system in the context of social commerce. Expert Syst. Appl. 149, 113301 (2020). https://doi.org/10.1016/j.eswa.2020.113301

    Article  Google Scholar 

  14. Esmeli, R., Bader-El-Den, M., Abdullahi, H.: Using word2vec recommendation for improved purchase prediction. In: Proceedings of the 2020 International Joint Conference on Neural Networks, IJCNN, 1–8, Glasgow, United Kingdom, IEEE. (2020). https://doi.org/10.1109/IJCNN48605.2020.9206871

  15. Fessahaye, F., Perez, L., Zhan, T., Zhang, R., Fossier, C., Markarian, R.-Oh, P.Y.: T-RECSYS: A novel music recommendation system using deep learning. In: Proceedings of the IEEE International Conference on Consumer Electronics, ICCE 2019, 1–6 (2019) Las Vegas, NV, USA. IEEE. https://doi.org/10.1109/ICCE.2019.8662028

  16. Fudholi, D.H., Rani, S., Arifin, D.M., Satyatama, M.R.: Deep learning-based mobile tourism recommender system. Sci. J. Inform. 8(1), 111–118 (2021). https://doi.org/10.15294/sji.v8i1.29262

    Article  Google Scholar 

  17. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, AISTATS, vol. 15, pp. 315–323. Fort Lauderdale, USAJMLR.org (2011)

  18. Guo, L., Liang, J., Zhu, Y., Luo, Y., Sun, L., Zheng, X.: Collaborative filtering recommendation based on trust and emotion. J. Intell. Inf. Syst. 53(1), 113–135 (2019). https://doi.org/10.1007/s10844-018-0517-4

    Article  Google Scholar 

  19. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pp. 770–778 (2016) Las Vegas, NV, USA. IEEE Computer Society. https://doi.org/10.1109/CVPR.2016.90

  20. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.: Neural collaborative filtering. In: Proceedings of the 26th International Conference on World Wide Web, pp. 173–182. Perth, Australia, ACM (2017). https://doi.org/10.1145/3038912.3052569

  21. He, X., Zhang, H., Kan, M., Chua, T.: Fast matrix factorization for online recommendation with implicit feedback. In: Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2016, pp. 549–558. ACM, Pisa, Italy (2016). https://doi.org/10.1145/2911451.2911489

  22. Hong, M.: Decrease and conquer-based parallel tensor factorization for diversity and real-time of multi-criteria recommendation. Inf. Sci. 562, 259–278 (2021). https://doi.org/10.1016/j.ins.2021.02.005

    Article  MathSciNet  Google Scholar 

  23. Hong, M., Jung, J.J.: Multi-criteria tensor model consolidating spatial and temporal information for tourism recommendation. J. Ambient Intell. Smart Environ. 13(1), 5–19 (2021). https://doi.org/10.3233/AIS-200584

    Article  MathSciNet  Google Scholar 

  24. Hong, M., Jung, J.J.: Multi-criteria tensor model for tourism recommender systems. Expert Syst. Appl. 170114537 (2021). https://doi.org/10.1016/j.eswa.2020.114537

  25. Hong, M., Jung, J.J.: Sentiment aware tensor model for multi-criteria recommendation. Appl. Intell. 1–20 (2022)

  26. Katarya, R., Arora, Y.: Capsmf: a novel product recommender system using deep learning based text analysis model. Multim. Tools Appl. 79(47), 35927–35948 (2020). https://doi.org/10.1007/s11042-020-09199-5

    Article  Google Scholar 

  27. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015. San Diego, CA, USA (2015)

  28. Kotiloglu, S., Lappas, T., Pelechrinis, K., Repoussis, P.: Personalized multi-period tour recommendations. Tour. Manag. 62, 76–88 (2017). https://doi.org/10.1016/j.tourman.2017.03.005

    Article  Google Scholar 

  29. Le, Q.V., Mikolov, T.: Distributed representations of sentences and documents. In: Proceedings of the 31th International Conference on Machine Learning, ICML, vol. 32, pp. 1188–1196 (2014) Beijing, China. JMLR.org

  30. Li, M., Wu, H., Zhang, H.: Matrix factorization for personalized recommendation with implicit feedback and temporal information in social ecommerce networks. IEEE Access 7, 141268–141276 (2019). https://doi.org/10.1109/ACCESS.2019.2943959

    Article  Google Scholar 

  31. Li, P., Wang, Z., Ren, Z., Bing, L., Lam, W.: Neural rating regression with abstractive tips generation for recommendation. In: Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 345–354. ACM, Shinjuku, Tokyo, Japan (2017). https://doi.org/10.1145/3077136.3080822

  32. Liu, Q., Chen, E., Xiong, H., Ge, Y., Li, Z., Wu, X.: A cocktail approach for travel package recommendation. IEEE Trans. Knowl. Data Eng. 26(2), 278–293 (2014). https://doi.org/10.1109/TKDE.2012.233

    Article  Google Scholar 

  33. Liu, Q. , Zeng, Y. , Mokhosi, R. ,Zhang, H.: STAMP: short-term attention/memory priority model for session-based recommendation. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1831–1839. UKACM, London (2018). https://doi.org/10.1145/3219819.3219950

  34. Lu, J., Wu, D., Mao, M., Wang, W., Zhang, G.: Recommender system application developments: a survey. Decis. Support Syst. 74, 12–32 (2015). https://doi.org/10.1016/j.dss.2015.03.008

    Article  Google Scholar 

  35. Misztal-Radecka, J., Indurkhya, B., Smywinski-Pohl, A.: Meta-user2vec model for addressing the user and item cold-start problem in recommender systems. User Model. User Adapt. Interact. 31(2), 261–286 (2021). https://doi.org/10.1007/s11257-020-09282-4

    Article  Google Scholar 

  36. Musto, C. , Semeraro, G. , de Gemmis, M. ,Lops, P.: Word embedding techniques for content-based recommender systems: an empirical evaluation. In: Proceedings of the 9th ACM Conference on Recommender Systems, recsys., vol. 1441. CEUR-WS.org, Vienna, Austria (2015)

  37. Nassar, N., Jafar, A., Rahhal, Y.: A novel deep multi-criteria collaborative filtering model for recommendation system. Knowl. Based Syst. (2020). https://doi.org/10.1016/j.knosys.2019.06.019

    Article  Google Scholar 

  38. Ozsoy, M.G.: From word embeddings to item recommendation. CoRR (2016). arXiv:1601.01356

  39. Park, S.-T., Liu, C.: A study on topic models using LDA and Word2Vec in travel route recommendation: focus on convergence travel and tours reviews. Pers. Ubiquit. Comput. (2020). https://doi.org/10.1007/s00779-020-01476-2

    Article  Google Scholar 

  40. Pessemier, T.D., Dhondt, J., Martens, L.: Hybrid group recommendations for a travel service. Multim. Tools Appl. 76(2), 2787–2811 (2017). https://doi.org/10.1007/s11042-016-3265-x

    Article  Google Scholar 

  41. Rakesh, V., Jadhav, N., Kotov, A., Reddy, C.K.: Probabilistic social sequential model for tour recommendation. In: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, WSDM 2017, pp. 631–640. ACM, Cambridge, United Kingdom (2017). https://doi.org/10.1145/3018661.3018711

  42. Sánchez-Moreno, D., Zheng, Y., García, M.N.M.: Incorporating time dynamics and implicit feedback into music recommender systems. In: Proceedings of the 2018 IEEE/WIC/ACM International Conference on Web Intelligence, WI 2018, pp. 580–585. IEEE Computer Society, Santiago, Chile (2018). https://doi.org/10.1109/WI.2018.00-34

  43. Shambour, Q.: A deep learning based algorithm for multi-criteria recommender systems. Knowl.-Based Syst. 211, 106545 (2021). https://doi.org/10.1016/j.knosys.2020.106545

    Article  Google Scholar 

  44. Sharifihosseini, A.: A case study for presenting bank recommender systems based on bon card transaction data. In: Proceedings of the 9th International Conference on Computer and Knowledge Engineering (ICCKE), pp. 72–77 (2019)

  45. Tahmasebi, H., Ravanmehr, R., Mohamadrezaei, R.: Social movie recommender system based on deep autoencoder network using twitter data. Neural Comput. Appl. 33(5), 1607–1623 (2021). https://doi.org/10.1007/s00521-020-05085-1

    Article  Google Scholar 

  46. Tan, C., Liu, Q., Chen, E., Xiong, H., Wu, X.: Object-oriented travel package recommendation. ACM Trans. Intell. Syst. Technol. 5(3), 43:1-43:26 (2014). https://doi.org/10.1145/2542665

    Article  Google Scholar 

  47. Thasal, R., Yelkar, S., Tare, A., Gaikwad, S.: Information retrieval and de-duplication for tourism recommender system. Int. Res. J. Eng. Technol. (IRJET) 5(03) (2018)

  48. Tong, C., Qi, J., Lian, Y., Niu, J., Rodrigues, J.J.P.C.: Timetrustsvd: A collaborative filtering model integrating time, trust and rating information. Future Gener. Comput. Syst. 93, 933–941 (2019). https://doi.org/10.1016/j.future.2017.07.037

    Article  Google Scholar 

  49. Vuong Nguyen, L., Nguyen, T.-H., Jung, J.J., Camacho, D.: Extending collaborative filtering recommendation using word embedding: a hybrid approach. Concurr. Comput. Pract. Exp. (2021). https://doi.org/10.1002/cpe.6232

    Article  Google Scholar 

  50. Wang, M.: Applying internet information technology combined with deep learning to tourism collaborative recommendation system. PLoS ONE 15(12), e0240656 (2020). https://doi.org/10.1371/journal.pone.0240656

    Article  Google Scholar 

  51. Zhang, P., Zhang, Z., Tian, T., Wang, Y.: Collaborative filtering recommendation algorithm integrating time windows and rating predictions. Appl. Intell. 49(8), 3146–3157 (2019). https://doi.org/10.1007/s10489-019-01443-2

    Article  Google Scholar 

  52. Zhang, S., Yao, L., Sun, A., Tay, Y.: Deep learning based recommender system: a survey and new perspectives. ACM Comput. Surv. 52(1), 5:1-5:38 (2019). https://doi.org/10.1145/3285029

    Article  Google Scholar 

  53. Zhao, P., Xu, C., Liu, Y., Sheng, V.S., Zheng, K., Xiong, H., Zhou, X.: Photo2trip: Exploiting visual contents in geo-tagged photos for personalized tour recommendation. IEEE Trans. Knowl. Data Eng. 33(4), 1708–1721 (2021). https://doi.org/10.1109/TKDE.2019.2943854

    Article  Google Scholar 

  54. Zheng, X., Luo, Y., Sun, L., Zhang, J., Chen, F.: A tourism destination recommender system using users’ sentiment and temporal dynamics. J. Intell. Inf. Syst. 51(3), 557–578 (2018). https://doi.org/10.1007/s10844-018-0496-5

    Article  Google Scholar 

  55. Zhu, G., Cao, J., Li, C., Wu, Z.: A recommendation engine for travel products based on topic sequential patterns. Multim. Tools Appl. 76(16), 17595–17612 (2017). https://doi.org/10.1007/s11042-017-4406-6

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea (NRF-2019S1A3A2098438).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Namho Chung.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, M., Chung, N., Koo, C. et al. TPEDTR: temporal preference embedding-based deep tourism recommendation with card transaction data. Int J Data Sci Anal 16, 147–162 (2023). https://doi.org/10.1007/s41060-022-00380-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41060-022-00380-7

Keywords

Navigation