Skip to main content
Log in

Apache Spark-based scalable feature extraction approaches for protein sequence and their clustering performance analysis

  • Regular Paper
  • Published:
International Journal of Data Science and Analytics Aims and scope Submit manuscript

Abstract

Genome sequencing projects are rapidly contributing to the rise of high-dimensional protein sequence datasets. Extracting features from a high-dimensional protein sequence dataset poses many challenges. However, many features extraction methods exist, but extracting features from millions of protein sequences becomes impractical because these approaches are not scalable. Therefore, to design an efficient scalable feature extraction approach that extracts significant features, we have proposed two Apache Spark-based scalable feature extraction approaches that extracts significantly important features based on statistical properties from huge protein sequences, which are termed 60d-SPF (60-dimensional Scalable Protein Feature) and 6d-SCPSF (6-dimensional Scalable Co-occurrence-based Probability-Specific Feature). The proposed 60d-SPF and 6d-SCPSF approaches capture the statistical properties of amino acids to create a fixed-length numeric feature vector that represents each protein sequence in terms of 60-dimensional and 6-dimensional features, respectively. The preprocessed huge protein sequences are used as an input in four clustering algorithms, i.e., scalable random sampling with iterative optimization fuzzy c-means (SRSIO-FCM), scalable literal fuzzy c-means (SLFCM), kernelized SRSIO-FCM (KSRSIO-FCM), and kernelized SLFCM (KSLFCM) for clustering. We have conducted extensive experiments on various soybean protein datasets to demonstrate the effectiveness of the proposed feature extraction methods, 60d-SPF, 6d-SCPSF, and existing feature extraction methods on SRSIO-FCM, SLFCM, KSRSIO-FCM, and KSLFCM clustering algorithms. The reported results in terms of the Silhouette index and the Davies–Bouldin index show that the proposed 60d-SPF extraction method on SRSIO-FCM, SLFCM, KSRSIO-FCM, and KSLFCM clustering algorithms achieve significantly better results than the proposed 6d-SCPSF and existing feature extraction approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. http://www.hpc.iitkgp.ac.in/HPCF/paramShakti.

  2. https://www.cdac.in/index.aspx?id=hgc.

References

  1. Guo, R., Zhao, Y., Zou, Q., Fang, X., Peng, S.: Bioinformatics applications on apache spark. GigaScience 7(8), giy098 (2018)

    Google Scholar 

  2. Alawneh, L., Shehab, M.A., Al-Ayyoub, M., Jararweh, Y., Al-Sharif, Z.A.: A scalable multiple pairwise protein sequence alignment acceleration using hybrid cpu-gpu approach. Clust. Comput. 23(4), 2677–2688 (2020)

    Article  Google Scholar 

  3. Krause, A., Stoye, J., Vingron, M.: Large scale hierarchical clustering of protein sequences. BMC Bioinform. 6(1), 15 (2005)

    Article  Google Scholar 

  4. Zou, Q., Lin, G., Jiang, X., Liu, X., Zeng, X.: Sequence clustering in bioinformatics: an empirical study. Brief. Bioinform. 21(1), 1–10 (2020)

    Google Scholar 

  5. Steinegger, M., Söding, J.: Clustering huge protein sequence sets in linear time. Nat. Commun. 9(1), 1–8 (2018)

    Article  Google Scholar 

  6. Zeng, M., Zhang, F., Wu, F.X., Li, Y., Wang, J., Li, M.: Protein-protein interaction site prediction through combining local and global features with deep neural networks. Bioinformatics 36(4), 1114–1120 (2020)

    Article  Google Scholar 

  7. Han, K.F., Baker, D.: Recurring local sequence motifs in proteins. J. Mol. Biol. 251(1), 176–187 (1995)

    Article  Google Scholar 

  8. Bystroff, C., Thorsson, V., Baker, D.: Hmmstr: a hidden markov model for local sequence-structure correlations in proteins. J. Mol. Biol. 301(1), 173–190 (2000)

    Article  Google Scholar 

  9. Jha, P., Tiwari, A., Bharill, N., Ratnaparkhe, M., Mounika, M., Nagendra, N.: A novel scalable kernelized fuzzy clustering algorithms based on in-memory computation for handling big data. IEEE Trans. Emerg. Topic. Comput. Intell. 5, 908–919 (2020)

    Article  Google Scholar 

  10. Jha, P., Tiwari, A., Bharill, N., Ratnaparkhe, M., Mounika, M., Nagendra, N.: Apache spark based kernelized fuzzy clustering framework for single nucleotide polymorphism sequence analysis. Comput. Biol. Chem 92, 107454 (2021)

    Article  Google Scholar 

  11. Jha, P., Tiwari, A., Bharill, N., Ratnaparkhe, M., Nagendra, N., Mounika, M.: Scalable incremental fuzzy consensus clustering algorithm for handling big data. Soft. Comput. pp 1–17 (2021b)

  12. Bezdek, J.C., Ehrlich, R., Full, W.: Fcm: the fuzzy c-means clustering algorithm. Comput. & Geosci. 10(2–3), 191–203 (1984)

    Article  Google Scholar 

  13. Zhang, C.T., Chou, K.C., Maggiora, G.: Predicting protein structural classes from amino acid composition: application of fuzzy clustering. Protein Eng. Des. Select. 8(5), 425–435 (1995)

    Article  Google Scholar 

  14. Lu, T., Dou, Y., Zhang, C.: Fuzzy clustering of cpp family in plants with evolution and interaction analyses. BMC Bioinform. 14(S13), S10 (2013)

    Article  Google Scholar 

  15. Farhangi, E., Ghadiri, N., Asadi, M., Nikbakht, MA., Pitre, S.: Fast and scalable protein motif sequence clustering based on hadoop framework. In: 2017 3th International Conference on Web Research (ICWR), IEEE, pp 24–31 (2017)

  16. Chunduri, R.K., Cherukuri, A.K.: Scalable formal concept analysis algorithms for large datasets using spark. J. Ambient Intell. Humaniz. Comput. pp 1–21 (2018)

  17. Oussous, A., Benjelloun, F.Z., Lahcen, A.A., Belfkih, S.: Big data technologies: a survey. J. King Saud Univ Comput Inform Sci 30(4), 431–448 (2018)

    Google Scholar 

  18. Bharill, N., Tiwari, A., Malviya, A.: Fuzzy based scalable clustering algorithms for handling big data using apache spark. IEEE Trans. Big Data 2(4), 339–352 (2016)

    Article  Google Scholar 

  19. Vipsita, S., Rath, S.K.: Two-stage approach for protein superfamily classification. Comput. Biol. J. 2013 (2013)

  20. Wang, J.T.L., Ma, Q., Shasha, D., Wu, C.H.: New techniques for extracting features from protein sequences. IBM Syst. J. 40(2), 426–441 (2001)

    Article  Google Scholar 

  21. Wu, C., Whitson, G., McLarty, J., Ermongkonchai, A., Chang, T.C.: Protein classification artificial neural system. Protein Sci. 1(5), 667–677 (1992)

    Article  Google Scholar 

  22. Dayhoff, M., Schwartz, R., Orcutt, B.: 22 a model of evolutionary change in proteins. In: Atlas of Protein Sequence and Structure, vol. 5, pp. 345–352. National Biomedical Research Foundation Silver Spring, MD (1978)

    Google Scholar 

  23. Das, J.K., Sengupta, A., Choudhury, P.P., Roy, S.: Mapping sequence to feature vector using numerical representation of codons targeted to amino acids for alignment-free sequence analysis. Gene 766, 145096 (2021)

    Article  Google Scholar 

  24. Bandyopadhyay, S.: An efficient technique for superfamily classification of amino acid sequences: feature extraction, fuzzy clustering and prototype selection. Fuzzy Sets Syst. 152(1), 5–16 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mansoori, E.G., Zolghadri, M.J., Katebi, S.D., Mohabatkar, H., Boostani, R., Sadreddini, M.H.: Generating fuzzy rules for protein classification. Iran. J. Fuzzy Syst 5(2), 21–33 (2008)

    MathSciNet  MATH  Google Scholar 

  26. Chou, K.C.: Some remarks on protein attribute prediction and pseudo amino acid composition. J. Theor. Biol. 273(1), 236–247 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Chou, KC.: Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes. Bioinformatics 21(1), 10–19 (2005)

  28. Yu, C., Deng, M., Cheng, S.Y., Yau, S.C., He, R.L., Yau, S.S.T.: Protein space: a natural method for realizing the nature of protein universe. J. Theor. Biol. 318, 197–204 (2013)

    Article  MATH  Google Scholar 

  29. Gupta, M., Niyogi, R., Misra, M.: An alignment-free method to find similarity among protein sequences via the general form of chou’s pseudo amino acid composition. SAR and QSAR in Environ. Res. 24(7), 597–609 (2013)

    Article  Google Scholar 

  30. Chou, K.C.: Prediction of protein cellular attributes using pseudo-amino acid composition. Protein. Struct. Funct. Bioinform. 43(3), 246–255 (2001)

    Article  Google Scholar 

  31. Bharill, N., Tiwari, A., Rawat, A.: A novel technique of feature extraction with dual similarity measures for protein sequence classification. Proced. Comput. Sci. 48, 795–801 (2015)

    Article  Google Scholar 

  32. Mansoori, E.G., Zolghadri, M.J., Katebi, S.D.: Protein superfamily classification using fuzzy rule-based classifier. IEEE Trans. NanoBiosci. 8(1), 92–99 (2009)

    Article  Google Scholar 

  33. Veiga, J., Expósito, R.R., Pardo, X.C., Taboada, G.L., Tourifio, J.: Performance evaluation of big data frameworks for large-scale data analytics. In: 2016 IEEE International Conference on Big Data (Big Data), IEEE, pp 424–431 (2016)

  34. Li, R., Hu, H., Li, H., Wu, Y., Yang, J.: Mapreduce parallel programming model: a state-of-the-art survey. Int. J. Parallel Program. 44(4), 832–866 (2016)

    Article  Google Scholar 

  35. Le Nir, Y.: Spark and machine learning library. TORUS 1–Toward an open resource using services: Cloud Comput. Environ. Data pp 229–243 (2020)

  36. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin, M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. In: Proceedings of the 9th USENIX conference on Networked Systems Design and Implementation, USENIX Association, pp 2–2 (2012)

  37. Tang, S., He, B., Yu, C., Li, Y., Li, K.: A survey on spark ecosystem for big data processing. (2018) arXiv preprint arXiv:1811.08834

  38. Chou, K.C.: Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes. Bioinformatics 21(1), 10–19 (2005)

    Article  Google Scholar 

  39. Dayhoff, M.O.: A model of evolutionary change in proteins. Atlas Prot. Seq. Struct. 5, 89–99 (1972)

    Google Scholar 

  40. Salloum, S., Dautov, R., Chen, X., Peng, P.X., Huang, J.Z.: Big data analytics on apache spark. Int. J. Data Sci. Anal. 1(3–4), 145–164 (2016)

    Article  Google Scholar 

  41. Borthakur, D., et al.: Hdfs architecture guide. Hado. Apac. Proj. 53(1–13), 2 (2008)

    Google Scholar 

  42. Wysmierski, P.T., Vello, N.A.: The genetic base of brazilian soybean cultivars: evolution over time and breeding implications. Gene. Mole. Biol. 36(4), 547–555 (2013)

    Article  Google Scholar 

  43. Sedivy, E.J., Wu, F., Hanzawa, Y.: Soybean domestication: the origin, genetic architecture and molecular bases. New Phytol. 214(2), 539–553 (2017)

    Article  Google Scholar 

  44. Lee, J.D., Shannon, J.G., Vuong, T.D., Nguyen, H.T.: Inheritance of salt tolerance in wild soybean (glycine soja sieb. and zucc.) accession pi483463. J. Hered. 100(6), 798–801 (2009)

  45. Xie, M., Chung, C.Y.L., Li, M.W., Wong, F.L., Wang, X., Liu, A., Wang, Z., Leung, A.K.Y., Wong, T.H., Tong, S.W., et al.: A reference-grade wild soybean genome. Nat. Commun. 10(1), 1–12 (2019)

    Article  Google Scholar 

  46. Bolshakova, N., Azuaje, F.: Cluster validation techniques for genome expression data. Signal Process. 83(4), 825–833 (2003)

    Article  MATH  Google Scholar 

  47. Dugué, N., Lamirel, J.C., Chen, Y.: Evaluating clustering quality using features salience: a promising approach. Neural Comput. Appl. 33(19), 12939–12956 (2021)

    Article  Google Scholar 

  48. Coelho, G.P., Barbante, C.C., Boccato, L., Attux, R.R., Oliveira, J.R., Von Zuben, F.J.: Automatic feature selection for bci: an analysis using the davies-bouldin index and extreme learning machines. In: The 2012 international joint conference on neural networks (IJCNN), IEEE, pp 1–8 (2012)

  49. Shen, H.B., Yang, J., Liu, X.J., Chou, K.C.: Using supervised fuzzy clustering to predict protein structural classes. Biochem. Biophys. Res. Commun. 334(2), 577–581 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Supercomputing Mission, HPC Applications Development Funded Research Project by DST in collaboration with the Ministry of Electronics and Information Technology (MeiTY), Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Preeti Jha.

Ethics declarations

Conflicts of interest

All authors declare that there are no conflicts of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, P., Tiwari, A., Bharill, N. et al. Apache Spark-based scalable feature extraction approaches for protein sequence and their clustering performance analysis. Int J Data Sci Anal 15, 359–378 (2023). https://doi.org/10.1007/s41060-022-00381-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41060-022-00381-6

Keywords