Skip to main content
Log in

Establishing FAIR (Findable, Accessible, Interoperable and Reusable) principles for estuarine organisms exposed to engineered nanomaterials

  • Review
  • Published:
International Journal of Data Science and Analytics Aims and scope Submit manuscript

Abstract

After 20 years of assessing ecotoxicological risks of engineered nanomaterials, data gaps limit the efficacy of regulatory guidelines. Presently, there are efforts to compile historical data on nanomaterial research into online data platforms that follow FAIR (findable, accessible, interoperable, and reusable) principles. FAIR data practices for alternative testing strategies such as mesocosms are needed as standard testing strategies and regulatory platforms do not appropriately capture the mobility and bioavailability of nanomaterials in an ecosystem, limits their ability to define environmental risk. The study created a FAIR dataset for mesocosm research from three European projects with data conforming to standard ontologies modified to accommodate mesocosms. Data ranked well on the FAIRness maturity indicator proposed by the European Union’s Horizon 2020 initiative, with data on physicochemical properties being a major limitation for reusability. Statistical analysis demonstrated that chemical elements were a dominant descriptor of the data. FAIR data were achieved in the present study; however, the research highlights questions surrounding data reporting guidelines for alternative testing strategies. Considerations around data usage for historical data are also necessary to meet stakeholder needs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The database is available through the MESOCOSM database which is accessible thorough the following link: https://aliayadi.github.io/MESOCOSM-database/#.

References

  1. Adam, V., Caballero-Guzman, A., Nowack, B.: Considering the forms of released engineered nanomaterials in probabilistic material flow analysis. Environ. Pollut. 243, 17–27 (2018). https://doi.org/10.1016/j.envpol.2018.07.108

    Article  Google Scholar 

  2. Ahamed, A., Liang, L., Lee, M.Y., Bobacka, J., Lisak, G.: Too small to matter? Physicochemical transformation and toxicity of engineered nTiO2, nSiO2, nZnO, carbon nanotubes, and nAg. J. Hazard. Mater. 404, 124107 (2021). https://doi.org/10.1016/j.jhazmat.2020.124107

    Article  Google Scholar 

  3. Ammar, A., Bonaretti, S., Winckers, L., Quik, J., Bakker, M., Maier, D., Lynch, I., van Rijn, J., Willighagen, E.: A semi-automated workflow for fair maturity indicators in the life sciences. Nanomaterials 10(10), 1–14 (2020). https://doi.org/10.3390/nano10102068

    Article  Google Scholar 

  4. Auffan, M., Masion, A., Mouneyrac, C., de Garidel-Thoron, C., Hendren, C.O., Thiery, A., Santaella, C., Giamberini, L., Bottero, J.Y., Wiesner, M.R., Rose, J.: Contribution of mesocosm testing to a single-step and exposure-driven environmental risk assessment of engineered nanomaterials. NanoImpact 13, 66–69 (2019). https://doi.org/10.1016/j.impact.2018.12.005

    Article  Google Scholar 

  5. Ayadi, A., Rose, J., de Garidel-Thoron, C., Hendren, C., Wiesner, M.R., Auffan, M.: MESOCOSM: a mesocosm database management system for environmental nanosafety. NanoImpact 21, 100288 (2021). https://doi.org/10.1016/j.impact.2020.100288

    Article  Google Scholar 

  6. Barrick, A., Châtel, A., Manier, N., Kalman, J., Navas, J.M., Mouneyrac, C.: Investigating the impact of manufacturing processes on the ecotoxicity of carbon nanofibers: a multi-aquatic species comparison. Environ. Toxicol. Chem. 38(10), 2314–2325 (2019). https://doi.org/10.1002/etc.4537

    Article  Google Scholar 

  7. Bertrand, C., Devin, S., Mouneyrac, C., Giambérini, L.: Eco-physiological responses to salinity changes across the freshwater-marine continuum on two euryhaline bivalves: Corbicula fluminea and Scrobicularia plana. Ecol. Ind. 74, 334–342 (2017). https://doi.org/10.1016/j.ecolind.2016.11.029

    Article  Google Scholar 

  8. Bertrand, C., Zalouk-Vergnoux, A., Giambérini, L., Poirier, L., Devin, S., Labille, J., Perrein-Ettajani, H., Pagnout, C., Châtel, A., Levard, C., Auffan, M., Mouneyrac, C.: The influence of salinity on the fate and behavior of silver standardized nanomaterial and toxicity effects in the estuarine bivalve Scrobicularia plana. Environ. Toxicol. Chem. 35(10), 2550–2561 (2016). https://doi.org/10.1002/etc.3428

    Article  Google Scholar 

  9. Bossa, C., Andreoli, C., Bakker, M., Barone, F., de Angelis, I., Jeliazkova, N., Nymark, P., Battistelli, C.L.: FAIRification of nanosafety data to improve applicability of (Q)SAR approaches: a case study on in vitro Comet assay genotoxicity data. Comput. Toxicol. 20, 100190 (2021). https://doi.org/10.1016/j.comtox.2021.100190

    Article  Google Scholar 

  10. Buffet, P.E., Amiard-Triquet, C., Dybowska, A., Risso-de Faverney, C., Guibbolini, M., Valsami-Jones, E., Mouneyrac, C.: Fate of isotopically labeled zinc oxide nanoparticles in sediment and effects on two endobenthic species, the clam Scrobicularia plana and the ragworm Hediste diversicolor. Ecotoxicol. Environ. Saf. 84, 191–198 (2012). https://doi.org/10.1016/j.ecoenv.2012.07.010

    Article  Google Scholar 

  11. Carboni, A., Slomberg, D.L., Nassar, M., Santaella, C., Masion, A., Rose, J., Auffan, M.: Aquatic mesocosm strategies for the environmental fate and risk assessment of engineered nanomaterials. Environ. Sci. Technol. 55, 16270–16282 (2021). https://doi.org/10.1021/acs.est.1c02221

    Article  Google Scholar 

  12. Comandella, D., Gottardo, S., Rio-Echevarria, I.M., Rauscher, H.: Quality of physicochemical data on nanomaterials: an assessment of data completeness and variability. Nanoscale 12(7), 4695–4708 (2020). https://doi.org/10.1039/c9nr08323e

    Article  Google Scholar 

  13. Haase, A., Klaessig, F., Nymark, P., Paul, K.B., Greco, D.: EU-US-Nanoinformatics-Roadmap-2030 (2018). https://doi.org/10.5281/zenodo.1486012

  14. Garner, K.L., Keller, A.A.: Emerging patterns for engineered nanomaterials in the environment: a review of fate and toxicity studies. J. Nanoparticle Res. 16(8), 1–5 (2014). https://doi.org/10.1007/s11051-014-2503-2

    Article  Google Scholar 

  15. Hardy, B., Apic, G., Carthew, P., Clark, D., Cook, D., Dix, I., Escher, S., Hastings, J., Heard, D.J., Jeliazkova, N., Judson, P., Matis-Mitchell, S., Mitic, D., Myatt, G., Shah, I., Spjuth, O., Tcheremenskaia, O., Tolda, L., Watson, D., White, A., Yang, C.: A toxicology ontology roadmap. Alternat. Anim. Exp. 29(2), 129–137 (2012). https://doi.org/10.14573/altex.2012.2.129

    Article  Google Scholar 

  16. Hastings, J., Jeliazkova, N., Owen, G., Tsiliki, G., Munteanu, C.R., Steinbeck, C., Willighagen, E.: eNanoMapper: harnessing ontologies to enable data integration for nanomaterial risk assessment. J. Biomed. Semant. (2015). https://doi.org/10.1186/s13326-015-0005-5

    Article  Google Scholar 

  17. Hendren, C.O., Powers, C.M., Hoover, M.D., Harper, S.L.: The Nanomaterial Data Curation Initiative: a collaborative approach to assessing, evaluating, and advancing the state of the field. Beilstein J. Nanotechnol. 6(1), 1752–1762 (2015). https://doi.org/10.3762/bjnano.6.179

    Article  Google Scholar 

  18. Hong, H., Adam, V., Nowack, B.: Form-specific and probabilistic environmental risk assessment of 3 engineered nanomaterials (Nano-Ag, Nano-TiO2, and Nano-ZnO) in European freshwaters. Environ. Toxicol. Chem. 40(9), 2629–2639 (2021). https://doi.org/10.1002/etc.5146

    Article  Google Scholar 

  19. Iannone, R., Cheng, J., Schloerke, B., Hughes, E., Lauer, A., & Seo, J.: gt: Easily create presentation-ready display tables. (2023)

  20. Jeliazkova, N., Chomenidis, C., Doganis, P., Fadeel, B., Grafström, R., Hardy, B., Hastings, J., Hegi, M., Jeliazkov, V., Kochev, N., Kohonen, P., Munteanu, C.R., Sarimveis, H., Smeets, B., Sopasakis, P., Tsiliki, G., Vorgrimmler, D., Willighagen, E.: The eNanoMapper database for nanomaterial safety information. Beilstein J. Nanotechnol. 6(1), 1609–1634 (2015). https://doi.org/10.3762/bjnano.6.165

    Article  Google Scholar 

  21. Kassambara, A., Mundt, F.: factoextra: Extract and visualize the results of multivariate data analyses (2016)

  22. Khan, S., Shaheen, M.: From data mining to wisdom mining. J. Inf. Sci. (2021). https://doi.org/10.1177/01655515211030872

    Article  Google Scholar 

  23. Kochev, N., Jeliazkova, N., Paskaleva, V., Tancheva, G., Iliev, L., Ritchie, P., Jeliazkov, V.: Your spreadsheets can be fair: a tool and fairification workflow for the enanomapper database. Nanomaterials 10(10), 1–23 (2020). https://doi.org/10.3390/nano10101908

    Article  Google Scholar 

  24. Koehlé-Divo, V., Cossu-Leguille, C., Pain-Devin, S., Simonin, C., Bertrand, C., Sohm, B., Mouneyrac, C., Devin, S., Giambérini, L.: Genotoxicity and physiological effects of CeO2 NPs on a freshwater bivalve (Corbicula fluminea). Aquat. Toxicol. 198, 141–148 (2018). https://doi.org/10.1016/j.aquatox.2018.02.020

    Article  Google Scholar 

  25. Lê, S., Josse, J., Rennes, A., & Husson, F. (2008). FactoMineR: An R package for multivariate analysis. In JSS J. Stat. Softw. (Vol. 25). http://www.jstatsoft.org/

  26. Making nano data FAIR enough. (2021). Nature Nanotechnology, 16, 607. https://doi.org/10.1038/s41565-021-00935-y

  27. Masion, A., Auffan, M., Rose, J.: Monitoring the environmental aging of nanomaterials: An opportunity for mesocosm testing? Materials 12(15), 2447 (2019). https://doi.org/10.3390/ma12152447

    Article  Google Scholar 

  28. Miao, A.J., Zhang, X.Y., Luo, Z., Chen, C.S., Chin, W.C., Santschi, P.H., Quigg, A.: Zinc oxide-engineered nanoparticles: dissolution and toxicity to marine phytoplankton. Environ. Toxicol. Chem. 29(12), 2814–2822 (2010). https://doi.org/10.1002/etc.340

    Article  Google Scholar 

  29. Miernicki, M., Hofmann, T., Eisenberger, I., von der Kammer, F., Praetorius, A.: Legal and practical challenges in classifying nanomaterials according to regulatory definitions. Nat. Nanotechnol. 14(3), 208–216 (2019). https://doi.org/10.1038/s41565-019-0396-z

    Article  Google Scholar 

  30. Mouneyrac, C., Buffet, P.-E., Poirier, L., Zalouk-Vergnoux, A., Guibbolini, M., Faverney, C.R., Gilliland, D., Berhanu, D., Dybowska, A., Châtel, A., Perrein-Ettajani, H., Pan, J.-F., Thomas-Guyon, H., Reip, P., Valsami-Jones, E.: Fate and effects of metal-based nanoparticles in two marine invertebrates, the bivalve mollusc Scrobicularia plana and the annelid polychaete Hediste diversicolor. Environ. Sci. Pollut. Res. 21, 7899–7912 (2014). https://doi.org/10.1007/s11356-014-2745-7

    Article  Google Scholar 

  31. NANOGENOTOX.: Final protocol for producing suitable manufactured nanomaterial exposure media (Standard Operation Procedure) (2011)

  32. Nassar, M., Auffan, M., Santaella, C., Masion, A., Rose, J.: Robustness of indoor aquatic mesocosm experimentations and data reusability to assess the environmental risks of nanomaterials. Front. Environ. Sci. 9, 625201 (2021). https://doi.org/10.3389/fenvs.2021.625201

    Article  Google Scholar 

  33. Nel, A., Xia, T., Meng, H., Wang, X., Lin, S., Ji, Z., Zhang, H.: Nanomaterial toxicity testing in the 21st century: use of a predictive toxicological approach and high-throughput screening. Acc. Chem. Res. 46(3), 607–621 (2013). https://doi.org/10.1021/ar300022h

    Article  Google Scholar 

  34. Pan, J.F., Buffet, P.E., Poirier, L., Amiard-Triquet, C., Gilliland, D., Joubert, Y., Pilet, P., Guibbolini, M., Risso De Faverney, C., Roméo, M., Valsami-Jones, E., Mouneyrac, C.: Size dependent bioaccumulation and ecotoxicity of gold nanoparticles in an endobenthic invertebrate: The Tellinid clam Scrobicularia plana. Environ. Pollut. 168, 37–43 (2012). https://doi.org/10.1016/j.envpol.2012.03.051

    Article  Google Scholar 

  35. Phalyvong, K., Sivry, Y., Pauwels, H., Gélabert, A., Tharaud, M., Wille, G., Bourrat, X., Benedetti, M.F.: Occurrence and origins of cerium dioxide and titanium dioxide nanoparticles in the Loire River (France) by single particle ICP-MS and FEG-SEM Imaging. Front. Enviro. Sci. 8, 141 (2020). https://doi.org/10.3389/fenvs.2020.00141

    Article  Google Scholar 

  36. R Core Team. (2020). R: A language and environment for statistical computing (Vienna, Austria). R Foundation for Statistical Computing. https://www.r-project.org/

  37. Revel, M., Châtel, A., Mouneyrac, C.: Omics tools: New challenges in aquatic nanotoxicology? Aquat. Toxicol. 193, 72–85 (2017). https://doi.org/10.1016/j.aquatox.2017.10.005

    Article  Google Scholar 

  38. Rocha, T.L., Gomes, T., Sousa, V.S., Mestre, N.C., Bebianno, M.J.: Ecotoxicological impact of engineered nanomaterials in bivalve molluscs: an overview. Mar. Environ. Res. 111, 74–88 (2015). https://doi.org/10.1016/j.marenvres.2015.06.013

    Article  Google Scholar 

  39. Silge, J., Roinson, D.: tidytext: Text mining and analysis using tidy data principles in R. J. Open Source Softw. 1(3), 37 (2016). https://doi.org/10.21105/joss.00037

    Article  Google Scholar 

  40. Stevenson, L.M., Krattenmaker, K.E., Johnson, E., Bowers, A.J., Adeleye, A.S., McCauley, E., Nisbet, R.M.: Standardized toxicity testing may underestimate ecotoxicity: environmentally relevant food rations increase the toxicity of silver nanoparticles to Daphnia. Environ. Toxicol. Chem. 36(11), 3008–3018 (2017). https://doi.org/10.1002/etc.3869

    Article  Google Scholar 

  41. Stewart, R.I.A., Dossena, M., Bohan, D.A., Jeppesen, E., Kordas, R.L., Ledger, M.E., Meerhoff, M., Moss, B., Mulder, C., Shurin, J.B., Suttle, B., Thompson, R., Trimmer, M., Woodward, G.: Mesocosm experiments as a tool for ecological climate-change research. Adv. Ecol. Res. 48, 71–181 (2013). https://doi.org/10.1016/B978-0-12-417199-2.00002-1

    Article  Google Scholar 

  42. Tantra, R., Sikora, A., Hartmann, N.B., Sintes, J.R., Robinson, K.N.: Comparison of the effects of different protocols on the particle size distribution of TiO2 dispersions. Particuology 19, 35–44 (2015). https://doi.org/10.1016/j.partic.2014.03.017

    Article  Google Scholar 

  43. Totaro, S., Gottardo, S., Pesudo, L.Q., intes, J.R.: Data logging templates for the environmental, health and safety assessment of nanomaterials. EUR28137 EN. (2017). https://doi.org/10.2787/505397

  44. Watjanatepin, P., Castagnola, V., Cetin, Y., Linkov, I., Skentelbery, C., Prodanov, D.: Workshop report: Governance of emerging nanotechnology risks in the semiconductor industry. Front. Public Health 8, 275 (2020). https://doi.org/10.3389/fpubh.2020.00275

    Article  Google Scholar 

  45. Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L., Francois, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T., Miller, E., Bache, S., Muller, K., Ooms, J., Robinson, D., Seidel, D., Spinu, V., Takahashi, K., Vaugha, D., Wilke, C., Woo, K., Yutani, H.: Welcome to the tidyverse. J. Open Softw. 4(43), 1686 (2019)

    Article  Google Scholar 

  46. Wilkinson, M.D., Dumontier, M., Aalbersberg, I.J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.W., da Silva Santos, L.B., Bourne, P.E., Bouwman, J., Brookes, A.J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C.T., Finkers, R., Gonzalez-Beltran, A., Gray, A.J., Groth, P., Goble, C., Grethe, J.S., Heringa, J., ’t Hoen, P.A., Hooft, R., Kuhn, T., Kok, R., Kok, J., Lusher, S.J., Martone, M.E., Mons, A., Packer, A.L., Persson, B., Rocca-Serra, P., Roos, M., van Schaik, R., Sansone, S.A., Schultes, E., Sengstag, T., Slater, T., Strawn, G., Swertz, M.A., Thompson, M., van der Lei, J., van Mulligen, E., Velterop, J., Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J., Mons, B.: The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016). https://doi.org/10.1038/sdata.2016.18

    Article  Google Scholar 

  47. Zhu, H., Travison, T., Tsai, T., Beasley, W., Xie, Y., Yu, G., Laurent, S., Shepherd, R., Yidi, Y., Salzer, B., Gui, G., Fan, Y., Murdoch, D., Evans, B.: kableExtra: Construct Complex Table with “kable” and Pipe Syntax (2021)

Download references

Acknowledgements

The authors appreciate the assistance of Mèlanie Auffan and Kenza Amzil from the Centre Européen de recherche et d’enseignement des géosciences de l’environnement (CEREGE) for ontology preparation, data uploading and web management of the database through the MESOCOSM platform.

Funding

The research contained within this publication was funded by the European Union’s Horizon 2020 research and innovation program NanoInformaTIX under Grant agreement 814426.

Author information

Authors and Affiliations

Authors

Contributions

AB contributed to conceptualization, methodology, software, validation, formal analysis, investigation, data curation, writing- original draft, IM contributed to data curation, writing reviewing and editing; H-PE contributed to data curation, writing reviewing and editing; J-MM contributed to formal analysis, visualization; AC contributed to funding acquisition, visualization, writing reviewing and editing. The sole responsibility of this publication lies with the author. The European Union is not responsible for any use that may be made of the information contained therein.

Corresponding author

Correspondence to Andrew Barrick.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflicts of interest

The authors declare no conflicts of interest in the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barrick, A., Métais, I., Ettajani, HP. et al. Establishing FAIR (Findable, Accessible, Interoperable and Reusable) principles for estuarine organisms exposed to engineered nanomaterials. Int J Data Sci Anal 16, 407–419 (2023). https://doi.org/10.1007/s41060-023-00447-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41060-023-00447-z

Keywords

Navigation